


Real-Time UML Workshop
for Embedded Systems



This Page Intentionally Left Blank



Real-Time UML Workshop
for Embedded Systems

by Bruce Powel Douglass, Ph.D.

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ¢ SAN DIEGO
SAN FRANCISCO e SINGAPORE e SYDNEY ¢ TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes




Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via the
Elsevier homepage (http://elsevier.com), by selecting “Support & Contact,” then
“Copyright and Permission” and then “Obtaining Permissions.”

@ Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.
Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data
A cartalogue record for this book is available from the British Library.

ISBN-13: 978-0-7506-7906-0
ISBN-10: 0-7506-7906-9

For information on all Newnes publications
visit our website at www.books.elsevier.com

07 08 09 10 10 987654321

Printed in the United States of America

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o0 Foundation




This book is dedicated to my family—
two boys who make me proud,
a wife any man would envy,
and a stepdaughter who is so bright, she’s scary.
It’s good to be me—thanks, guys!



This Page Intentionally Left Blank



Contents

Preface . ... e e Xiii
Audience. . .. ... .. . . . . . . Xiv
Goals . ... .. . . xv
Where to Go After the Book . . . ......... . ... ... .. .. . .... xXv
Evaluate UML on ARM . . ......... .. . . . . . . @', xv

Acknowledgments ............. ... .. .. i, xvii

Aboutthe Author ............ ... . i, Xix

What'sonthe CD-ROM? .. ... ...t XXi

Chapter 1: Introduction. . . ............ ... i, 1
Basic Modeling Concepts of the UML . .. ........................ 1
Structural Elements and Diagrams . ... ........... ... ... ...... 5

Small Things: Objects, Classes, and Interfaces. .. .................. 5
Relations. . ... .o 10
Big Things: Subsystems, Components, and Packages. . ............. 17
Behavioral Elements and Diagrams. . .. ........................ 19
Actions and ACHIVITIES . . .. oottt e e 19
Operations and Methods. .. ...... ... ... o i i 20
Activity Diagrams . .. ... ..o o i 20
Statecharts. . ... ...t 22
Interactions. . ... oottt e 27
Use Case and Requirements Modlels. . . . ........................ 31
Summary ... ... 33
Check Out the CD-ROM. . .. ........ ... ... 33

Chapter 2: The Harmony Process . . . ... ............. ... 35
Introduction . . ... ... . . . . . . . . 35
The Harmony Development Process .. ......................... 36

Why Process? .. ...t 36
Harmony Process Overview . ....... ... .. . . . ... 41

vii



viii

Contents

The Systems Engineering Harmony Workflows in Detail ........... 43
The Incremental (Spiral) Development Workflows in Detail. . .. .. ... 47
Increment Review (Party!) Workflow. . ... ... ... o oot 48
Design with the Harmony Process. . . .............. ... ... ... 55
Implementation . ....... ...t 60
= 61
Summary ... ... 63
Chapter 3: Specifying Requirements ... ................. 65
OUerview . ... ... 65
Problem 3.1 Identifying Kinds of Requirements for Roadrunner
Traffic Light Control System. ... ....... ... ... ..., 67
Problem 3.2 Identifying Use Cases for the Roadrunner
Traffic Light Control System. . .. ....... ... ... .. 69
Problem 3.3 Mapping Requirements to Use Cases. . . .............. 69
Problem 3.4 Identifying Use Cases for the Coyote UAV System. . . . . . .. 70
Problem 3.5 Identifying Parametric Requirements .. .............. 70
Problem 3.6 Capturing Quality of Service Requirements in Use Cases . . 71
Problem 3.7 Operational View: Identifying Traffic Light Scenarios . . .. 71
Problem 3.8 Operational View: CUAVS Optical Surveillance
Scenarios. . ... ... 73
Problem 3.9  Specification View: Use-Case Description. ... ......... 73
Specification View: State Machines for Requirements Capture. . . . . . . .. 74
Problem 3.10 Specification View: Capturing Complex Requirements. . . 76
Problem 3.11 Operational to Specification View: Capturing
Operational Contracts . ..............c.cciiiiineiinen... 77
References ... ... i 82
Chapter 4: Systems Architecture ....................... 83
OUerview . ... ... 83
Problem 4.1 Organizing the Systems Model . ... ................. 85
Problem 4.2 Subsystem Identification ......................... 90
Problem 4.3 Mapping Operational Contracts into
Subsystem Architecture. . . ....... ... ... . 92
Problem 4.4 Identifying Subsystem Use Cases . ... ............... 101

Looking Ahead . .. ....... .. .. . . . . . ... ... 107



Contents ix

Chapter 5: Object Analysis . . ............. ..., 109
OUerview . ........ . 109
Key Strategies for Object Identification . .. ..................... 111

Underline the Noun Strategy. .. ................ ... . ........ 113
Identify the Causal Agents. .. .......... ... ... .. ..., 113
Identify Services (Passive Contributors or Server Objects) . .. ... .. .. 114
Identify Messages and Information Flows . ..................... 114
Identify Real-World Items. ... ... i i 114
Identify Physical Devices. ... ..... ..o 114
Identify Key Concepts. . ..o vvniiii i 115
Identify Transactions. . . ......oouuint i 115
Identify Persistent Information . ........... .. ... . ... ... ..., 115
Identify Visual Elements . .. ...... ... .. . i i 115
Identify Control Elements. .. ......... ... o ... 116
Apply Scenarios. . . ... 116
Problem 5.1 Apply Nouns and Causal Agents Strategies. . . .. .. ... .. 116
Problem 5.2 Apply Services and Messages Strategies. . ... .......... 125
Problem 5.3 Apply Real-World Items and Physical Devices Strategies . . 127
Problem 5.4 Apply Key Concepts and Transaction Strategies . . . . . . .. 128
Problem 5.5 Apply Identify Visual Elements and Scenarios Strategies . . 128
Problem 5.6 Merge Models from the Various Strategies . .. ......... 137
Looking Ahead . .. ........ ... . .. . . . . . .. ..., 139

Chapter 6: Architectural Design....................... 141
OUerview . ... ... 141
Problem 6.1 Concurrency and Resource Architecture. . ... ......... 147
Problem 6.2 Distribution Architecture. . .. .................... 158
Problem 6.3 Safety and Reliability Architecture . ... ............. 163
Looking Abead . .. ...... ... .. . . . . . .. . ... 177

Chapter 7: Mechanistic and Detailed Design ............ 179
OUerview . ........ . 179
Mechanistic Design .. ...........c.... i, 180

Delegation Pattern Strategy. .. ........ ... o i 183
Interface Abstraction Pattern Strategy . ............. ... . ... ... 185
Detailed Design. ... ........... ... i 187

Problem 7.1 Applying Mechanistic Design Patterns—Part 1. . . ... . . .. 192



X

Contents

Problem 7.2 Applying Mechanistic Design Patterns—Part 2. . . . . .. . .. 196
Problem 7.3 Applying Detailed-Design State Behavior Patterns . . . . . 201
Problem 7.4 Applying Detailed Design Idioms . ... .............. 206
Summary ... ... 214
Chapter 8: Specifying Requirements: Answers........... 215
Answer 3.1 Identifying Kinds of Requirements . ... .............. 215
Answer 3.2 Identifying Use Cases for Roadrunner Traffic
Light Control System . . . ....... ... ... i, 216
Answer 3.3 Mapping Requirements to Use Cases. . . .............. 219
Answer 3.4 Identifying Use Cases for Coyote UAV System . ... ... ... 220
Answer 3.5 Identifying Parametric Requirements . .. ............. 222
Answer 3.6 Capturing Quality of Service Requirements. . . ... ... ... 223

Answer 3.7 Operational View: Identifying Traffic Light Scenarios . . . . 224
Answer 3.8 Operational View: CUAVS Optical Surveillance

Scenarios. . ... ... 228
Answer 3.9 Specification View: Use-Case Descriptions. . . .......... 231
Answer 3.10 Specification View: Capturing Complex Requirements. . . 232
Answer 3.11 Operational to Specification View: Capruring

Operational Contracts . .............c.cuuiiiuieineo... 238
References ... ... ... 242
Chapter 9: Systems Architecture: Answers . . ............ 243
Answer 4.1 Organizing the Systems Model . . . .................. 243
Answer 4.2 Subsystem Identification ... ...................... 250
Answer 4.3 Mapping Operational Contracts into the Subsystem
Architecture. . .. ....... .. . . 256
Answer 4.4 Identifying Subsystem Use Cases. ... ................ 267
Chapter 10: Object Analysis: Answers. ................. 273
Answer 5.1 Apply Nouns and Causal Agents Strategies . . ... ....... 273
Answer 5.2 Apply Services and Messages Strategies . .. ............ 291
Answer 5.3 Applying the Real-World Items and Physical Devices
Strategies. ... ... .. 297
Answer 5.4 Apply Key Concepts and Transaction Strategies . . . . . . . .. 299
Answer 5.5 Identify Visual Elements and Scenarios Strategies . . . . . .. 303

Answer 5.6 Merge Models from the Various Strategies . . . .......... 315



Contents xi

Chapter 11: Architectural Design: Answers. ............. 317
Answer 6.1 Concurrency and Resource Architecture. . . ............ 317
Answer 6.2 Distribution Architecture. . ... .................... 319
Answer 6.3 Safety and Reliability Architecture . .. ............ ... 323

Chapter 12: Mechanistic and Detailed Design: Answers ... 339
Answer 7.1 Applying Mechanistic Design Patterns—DPart 1 . . ... ... .. 339
Answer 7.2 Applying Mechanistic Design Patterns—Part2 . ... ... ... 341
Answer 7.3 Applying Detailed-Design State Behavior Patterns. . . . . . . 346
Answer 7.4 Applying Detailed-Design Idioms. . ................. 351

Appendix A: The Roadrunner Intersection

Controller System Specification................... 357
Ouerview . . ... 357
The Intersection Controller (IC). ... ... ... .. .. . . ... 357

Configuration Parameters . .. .......... ... ... o . 358
Intersection Modes . . ... oot 361
The Vehicle Detector . ... i 365
Vehicular Traffic Lighe. . ... ..o oo 366
Pedestrian Lightand Sensor .......... ... . ... ... . ... 367
Front Panel Display. .. ... i 368
Remote Communications . . ..o vvvv v en i 369
Power ..o 370

Appendix B: The Coyote Unmanned Air Vehicle

System (CUAVS) Specification . ................... 371
OQUerview . . ... 371
Primary CUAV System Components. .. ....................... 371

The Unmanned Air Vehicle (UAV) . ........ ... .. . . .. 371
The Coyote Mission Planning and Control System (CMPCS) ... ... 372
Coyote Payloads . ....... ... o 372
The Coyote Datalink Subsystem (CDS) ....................... 373
Detailed Requirements. .. ............. ... . ... ... 373
The Unmanned Air Vehicle (UAV) . .. ... . 373
Flight Modes. .. ...t e 373
Mission Modes . .. ..ot 374

The Coyote Mission Planning and Control System (CMPCS). . . . . . .. 374



xii Contents

The Coyote Reconnaissance Sensor Suite Payload (CSSP) . .......... 375
The Coyote Hellfire Attack Payload (CHAP). . .................. 376
The Coyote Datalink Subsystem (CDS). . ...................... 377
Appendix C: UML Notational Summary................. 379
401



Preface

Most books on UML or real-time systems, even those that I have written, are what
I call “lecture books.” They might have exercises at the end of the chapters, but
they are basically organized around “Here, let me tell you about that...” This book
is fundamentally different. It is meant to be a workbook, a set of guided exercises
that teach by practice and example, not by exposition. As such, we won't discuss
in detail various aspects of the UML, or MDA, or even process. We will mention
such things in passing, but the expectation is that the reader already has a reasonable
understanding of the UML and wants practice and experience in the application of
the UML to embedded and real-time systems development. This book is meant as
a companion to another of my books, Real-Time UML, Third Edition: Advances in
the UML for Real-Time Systems.' That book s a lecture book and explains, in some
detail, the structural, behavioral, and functional aspects of the UML, particularly

how it applies to the development of real-time and embedded systems.

The present book is organized primarily around two example problems, whose
detailed problem statements can be found in the appendices. To give some breadth
of experience in the exercises, both a small-scale and large-scale application are pro-
vided. The small-scale example is an intersection traffic-light control system. This
is a small-scale system but is still complex enough to be a rich source of work for
the reader.? The larger-scale example is an Unmanned Air Vehicle (UAV), although
it is more properly called an Unmanned Combat Air Vehicle (UCAV). This system
is highly complex and offers good experience in doing requirements analysis and
architectural design for large-scale systems, something the traffic-light control system

' Douglass, Bruce Powel, Real-Time UML, Third Edition: Advances in the UML for Real-Time Systems,
Addison-Wesley, 2004.

One of the Laws of Douglass is “Anything is simple if you don’t have to do it!” This certainly applies
in spades to the development of real-time systems, since even “simple” systems can be very complex.
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xiv Preface

cannot. The point of these examples is to provide a context for the reader to explore
the application of UML to the specification, analysis, and design of such systems.
It is most assuredly 7oz to provide complete designs of such systems. Such systems
are created by teams (or, as in the case of the UCAYV, teams of teams). If the purpose
of the book was to provide complete designs of such systems, the book would be
between 20 and 100 times its present size.

This book can be thought of as being composed of several parts. First is a brief
overview of the basics—UML and process—provided in Chapters 1 and 2. The
next section is a series of chapters that walk through the phases of an incremental
spiral process—requirements analysis, object analysis, architectural design, mecha-
nistic design, and detailed design—posing problems that occur in the context of
the examples. The next section provides solutions for the problems posed in the
previous section. Lastly, there is some end-matter—the appendices that provide the
problem statements and a brief notational guide to the UML.

All the UML diagrams in this book are created in the Rhapsody™ tool from
Telelogic, and a demo copy of Rhapsody is provided in this book. The full version
offers validation, model execution, and production-quality code generation facilities,
as well as interfaces to other tools, such as requirements management, XMI import/
export, etc. While these features are enormously helpful in actual development, they
are not relevant to the purpose of the book. If you prefer to use another tool for the
exercises, or even (gasp) pen and paper, you can do that as well.

The solutions are, of course, the “pointy end” of the stick. They are meant, not so
much as the absolute truth or measure of goodness in UML modeling, but instead as
examples of solutions to the problem. If your solution differs from the one provided
and still meets the solution criteria, then that’s perfectly fine. There are always many
good solutions to any problem.? If your solution differs from the provided solution,
I recommend that you study the differences between the two and determine under
which conditions one or the other would be preferable.

Audience

The book is oriented towards the practicing professional software developer and the
computer science major, in the junior or senior year. It focuses on practical experience
by solving posed problems from the context of the examples. The book assumes a
reasonable proficiency in UML and at least one programming language (C++ is used

> There are always even more bad solutions to any problem as well!
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in this book, but C, Java, Ada, or any equivalent 3GL can be used). This book is
meant as a companion to the author’s Real-Time UML, Third Edition: Advances in
the UML for Real-Time Systems, but that book is not required to use this workbook.
Other books that may help the reader by providing more depth in various topic
areas include the author’s Doing Hard Time: Developing Systems with UML, Objects,
Frameworks and Patterns, Addison-Wesley, 1999, and Real-Time Design Patterns:
Robust Scalable Architecture for Real-Time Systems, Addison-Wesley, 2002.

Goals

The goal of this book is simply to give the reader practical experience in modeling
different aspects of real-time and embedded systems. While there is some introduc-
tion early in the first two chapters of the book and at the beginning of the problem
chapters, the goal is to pose problems for the reader to model. The book includes
a demo version of the powerful Rhapsody™ tool, but the use of that tool is not
required to go through the exercises.

By the time you've reached the end of the book, you will hopefully have the
expertise to tackle the real modeling issues that you face in your life as a professional
developer of real-time and embedded systems.

Where to Go After the Book

If you're interested in tools, training, or consulting, see www.ztelelogic.com or
wwuw.ilogix.com. The author teaches classes and consults worldwide on UML, MDA,
DoDAF, architectural design, design patterns, requirements modeling, use cases,
safety critical development with UML, behavioral modeling, the development pro-
cess improvement, project management and scheduling, and quite a bit more. You
can contact him for training or consulting services at Bruce. Douglass@telelogic.com.
He also runs a (free) yahoo group forum at hrtp://groups.yahoo.com/group/
RT-UML—come on down! The I-Logix website also has many white papers available

for downloading on different topics that may be of interest.

Evaluate UNIL on ARM

On the CD-ROM with this book, you will find the Rhapsody UML tool from
Telelogic (for further information, see What’s on the CD-ROM?). Do you want to
evaluate the UML on an ARM microcontroller using C? Willert Software Tools
delivers an evaluation version for the UML for generating ARM software. You can
download this at hep:/fwww.willert.de/rxf_eval.
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The evaluation software contains the following:
o Telelogic Rhapsody demo version

e Keil MicroVision/ARM compiler
A good ARM compiler with a very usable IDE. Compiler, simulator and debug-

ger integrated in a nice package.

o Willert WST52It Bridge
The Willert Framework RXF (modified version of the Rhapsody framework)
optimized for small microcontrollers, code size under 4k ROM and 200 bytes
of RAM, where speed and code size are critical.

The evaluation versions are limited but fully functional for the evaluation mod-
els. The generated models run in the Keil simulator. If you want to see the models
run on real hardware you can order an evaluation kit for an attractive price. This

kit contains a Keil MCB2130 Board with the Philips ARM7 chip and a uLink
USB/JTAG debugger interface.

Bruce Powel Douglass, Ph.D.
Summer, 2006
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Introduction

What you will learn:

Basic modeling concepts of the UML
Overview of the UML. What's a design pattern?

Class and object models

What classes and objects are. How classes and objects work together
in collaborations. Collaborations are the realizations of use cases.
Includes packaging of logical elements.

Component and deployment models
Representing run-time artifacts and localizing them on processor
nodes.

State machines and behavioral models
What are state machines and how do they model behavior?

Use case and requirements models
Capturing black-box behavior without revealing internal structure

Basic Modeling Concepts of the UNL
The Unified Modeling Language (UML) is a third-generation object-modeling

language standard, owned by the Object Management Group (OMG). The initial
version of the OMG UML standard, 1.1, was released in November of 1997. Since

then, a number of minor revisions and one major revision have been made. As of

this writing, the current version of the standard is 2.0 and is available from the

OMG at www.omg.org.

The UML is a rich language for modeling both software and systems, and it is

the de facto standard for software modeling. There are a number of reasons for this,

and it is the totality of all of them which, I believe, accounts for the phenomenal

1
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Chapter 1

success of the UML. The UML is, first of all, relatively easy to learn and, once
learned, relatively intuitive. Secondly, the UML is well-defined, and models writ-
ten in the UML can be verifiable (if care is taken to be precise), so not only can
the models be directly executed (with appropriate tools, such as Rhapsody™) but
production-quality code can be generated from them. Third, there is great tool sup-
port; there are many vendors, and they have distinguished themselves in the market
by emphasizing different aspects of modeling and development.

The notation used by the UML is graphical in nature, easy to master and, for the
most part, simple to understand.! Although some people claim that the UML has 700
many diagrams, in reality there are only four basic types (see Figure 1.1). Structural
diagrams include class, structure, object, package, component, and deployment
diagrams. These are all basically differentiated, not on the contents of the diagram,
but on their purpose. Functional diagrams emphasize functionality but not structure
or behavior; functional diagrams include use case and information flow diagrams.
Interaction diagrams focus on how elements collaborate together over time to achieve
functional goals; interaction diagrams include sequence, communication (formerly
known as “collaboration”), and timing diagrams. Lastly, behavioral diagrams focus
on specification of behavior of individual elements; these include state machine and
activity diagrams. Although the breadth of the notation can be a bit overwhelming
to newcomers, in reality, complex systems can be easily developed with three core
diagrams—class diagrams, statecharts, and sequence diagrams. The other diagrams

Activity
Diagrams
Statechart
\ Diagrams
Behavioral
Diagrams
Info Flow
Diagrams
Use Case
Diagrams

Structure
Class Diagrams
Diagrams
Object
Diagrams
Deployment
Diagrams
Component
Diagrams
Communication
Diagrams

Figure 1.1 UML diagram types

uctural
Diagrams

Functional
Diagrams

Interaction
Diagrams

Timing
Diagrams

Sequence
Diagrams

1

Although, like all languages, it has subtle points as well.
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can be used to model additional aspects of the system (such as capturing require-
ments, or how the software maps onto the underlying hardware). The additional
diagrams add value, certainly, but you only need the three basic diagram types to
develop systems and software.

The UML has a well-defined underlying semantic model, called the UML
metamodel. This semantic model is both broad (covering most of the aspects neces-
sary for the specification and design of systems) and deep (meaning that it is possible
to create models that are both precise and executable and can be used to generate
source-level code for compilation). The upshot is that the developer can fairly easily
model any aspect of the system that he or she needs to understand and represent.
Figure 1.2 shows a screen shot of a model execution. Rhapsody uses color-coding
to depict aspects such as the current state, but color-coding doesn’t show up well in
a black-and-white image. You can see the execution controls in the figure for step-
into, step-over, setting breakpoints, inserting events and so on. Rhapsody can also
dynamically create sequence diagrams that show the history of the interaction of
specified objects as they run.?

/7% Rhapsudy in G+ = by | Logix Inc. - Porls_Arlicic.rpy

= ARD x |6 qEOE R 00 B o 0] % ¥ 31| Bl %)
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Figure 1.2 Model execution

2 The models in this book were created in Rhapsody. The accompanying CD contains a demo version

of the tool for use in doing the exercises that form the bulk of this book. For more details, see the
README.TXT file on the CD and see the tutorials available in the Help — List of Books menu.
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The UML is a standard, unlike most modeling languages that are both proprietary
and single-sourced. Using a standard modeling language means that the developer
can select both tools and services from many different sources. For example, there
are at least a couple of dozen different UML modeling tools. Since the tools focus
on different aspects of modeling and have different price points, developers can find
and select tools that best meet their own and their project’s needs. For example,
Rhapsody from Telelogic emphasizes the deep semantics of the UML, allowing the
validation and testing of the user’s models via execution and debugging using the
UML notation. This execution can take place on the host development machine or
on the final target hardware, and the generated code can then be used in the final
delivered system. Other tools emphasize other aspects, such as drawing the diagrams
but permitting more flexibility for a lower price point. The availability of so many
different tools in the market gives the developer a great deal of latitude in tool
selection. It also encourages innovation and improvement in the tools themselves.
Because the UML is such a well-adopted standard, many companies provide train-
ing in the use and application of the UML. I spend a great deal of my time training
and consulting all over the world, focusing on using UML in embedded real-time
systems and software development.?

The UML is applicable to the development of software and systems in many
different application domains. By now, the UML has been used in the development
of virtually every kind of software-intensive system from inventory systems to flight
control software. Being a maintained standard, the standard itself evolves over time,
repairing defects, adopting good ideas and discarding ones that didn't pan out. The
UML is used today to model and build systems that vary in scope from simple
one- or two-person projects up to ones employing literally thousands of develop-
ers. The UML supports a// the things necessary to model timeliness and resource
management that characterize real-time and embedded systems. That means that
developers need not leave the UML to design the different aspects of their system,
regardless of how complex or arcane those things might be.

In this chapter, we'll introduce the basics of the UML. This is intended more as
a refresher than a tutorial. Those desiring a more in-depth treatment of UML itself
should pick up the companion book to this volume, Real-Time UML, Third Edi-
tion: Advances in the UML for Real-Time Systems, Addison-Wesley, 2004 by Bruce
Powel Douglass. Additionally, there are many white papers available on the I-Logix

website, wwuw.ilogix.com.

> Interested readers looking for professional services can contact me at bruce.douglass@telelogic.com.
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Structural Elements and Diagrams

The UML has a rather rich set of structural elements and provides diagrammatic views
for related sets of them. Rather arbitrarily, we’ll discuss modeling small, simple elements
first, and then discuss large-scale elements and model organization afterwards.

Small Things: Objects, Classes, and Interfaces

There are a number of elementary structural concepts in the UML that show up in
user models: object, class, data type, and interface. These structural elements form
the basis of the structural design of the user model. In its simplest form, an object
is a data structure that also provides services that act on that data. An object only
exists at run-time; that is, while the system is executing, an object may occupy some
location in memory at some specific time. The data known to an object are stored
in attributes—simple, primitive variables local to that object. The services that act
on that data are called methods; these are the services invoked by clients of that
object (typically other objects) or by other methods existing within the object. State
machines and activity diagrams may enforce specific sequencing of these services
when pre- and post conditions must be met.

A class is the specification of a set of objects that share a common structure and
behavior. Objects are said to be 7mstances of the class. A class may have many instances
in the system during run-time but an object is an instance of only a single class. A
class may also specify a statechart that coordinates and manages the execution of
its primitive behaviors (called actions, which are often invocations of the methods

defined in the class) into allowable sets of sequences.

If you look in Figure 1.3, you can see a basic class diagram. Note that objects are
not shown. That is because when you show objects you are showing a snapshot of
a running system at an instant of time. Class diagrams represent the set of possible
object structures. Most often, when you create structural views, you will be more
interested in creating class, rather than object, diagrams.

The DeliveryController object in the figure is an example class. It contains attri-
butes, such as commandedConcentration (which is of type double) and the selected
agent (i.e., drug) type. It provides methods, such as the ability to select an agent,
to get the amount of drug remaining, and to set the commanded drug concentra-
tion. The DeliveryController class is shown as a standard box with three segments.
The top segment holds the name of the class. The middle segment holds a list of
the attributes. Note, however, that this list need not be complete—not all of the
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attributes owned by the class must be shown. The bottom compartment shows the
methods of invocable services provided by the class.

Figure 1.3 shows other classes as well, and lines (called an relations—more on
that later) connecting them. Some of these are shown in a simple, nonsegmented
box, such as the TextView class. The attributes and methods, collectively known as
features of the class, need not be shown. They are contained within the model and
easily visible in the tool browser view, and may be exposed on the diagram if desired.
But you have control over which features are shown on which diagrams.
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1

1

selectknob

1

1

1

levelKnob

1

IconicVew
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Figure 1.3 Basic class diagram

An interface is a named collection of services. Services come in two basic flavors.
Operations are synchronous services that are invoked, or called, by clients. Event
receptions are asynchronous services that are invoked by sending an asynchronous
signal to the object accepting that event. An interface can contain either or both
operations and event signals. Both operations and event signals can contain data,
called parameters, passed with the invocation. The set of parameters, along with the
name of the service, is called the signature of the service. A class that is compliant
with an interface provides a method for every operation and an event reception for
every signal specified in the interface.

Interfaces allow you to separate the specification of services that may be called

on a class from the implementation of those services. A class defines methods (for
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operations) and event receptions (for signals, specified on the state machine). Both
these methods and event receptions include the lines of code that implement the
service. An operation or signal is a specification only and does not include such
implementation detail.

Interfaces may not have implementation (either attributes or methods) and are not
directly instantiable. A class is said to realize an interface if it provides a method for
every operation specified in the interface, and those methods have the same names,
parameters, return values, preconditions and postconditions of the corresponding
operations in the interface.

Interfaces may be shown in two forms. One looks like a class except for the key
word interface placed inside guillemots, as in «interface». This form, called a stereorype
in UML, is used when you want to show the service details of the interface. The
other form, commonly referred to as the “lollipop” notation, is a small named circle
on the side of the class. Both forms are shown in Figure 1.4. When the lollipop is
used, only the name of the interface is apparent. When the stereotyped form is used,
a list of operations of the interface may be shown.

In Figure 1.4, two interfaces are shown, both of which happen to, in this case,
only provide asynchronous event signals. The generalization arrow indicates the
class that realizes the interface—that is, provides the services. Also shown are ports
on the classes (more on ports later). The port is typed by the interfaces that are
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'/
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Interface
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[ clockPort CX
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EevStop().void IStopStart iStopStart
il
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Interface

Figure 1.4 Interfaces
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either offered or required across that port. In this case, the clockPort, a feature
of the Timer class, offers the iStopStart interface services and requires the iTick
interface. That means that to connect to that port, the other class must provide the
iTick interface and require the iStopStart interface. The lollipop notation shows the
provided (also known as “offered”) interface while the socket notation indicates the
required interface. This kind of modeling allows the developer to specify contracts
that enable compatible elements to be linked together and is important, especially
in architectural and component design.

In summary, an object is one of many possible instances of a class. A class has two
notable features—attributes (which store data values) and methods (which provide
services to clients of the class). Interfaces are named collections of operations that are
realized by classes. Interfaces need not be explicitly modeled. Many useful systems
have been designed solely with classes, but there are times when the addition level
of abstraction is useful, particularly when more than a single implementation of an
interface will be provided.

Structured Classes

One of the significant extensions in UML 2.0 is the notion of a structured class. A
structured class is a class that is composed of parzs (object roles) that are themselves
typed by classes. Structured classes still have all the features and properties (such as
attributes and methods) as normal classes, but they themselves internally own and
orchestrate their internal parts. This is a huge advancement in the UML standard*
because it allows the explicit specification of architectural containment structures.
For example, systems contain subsystems as parts; these subsystems can contain sub-
subsystems, and so on down to primitive (nonstructured) parts. In addition, since
the common means for representing concurrency units (e.g., threads or tasks) is
with active objects, then these active objects can contain the passive (nonconcurrent)
objects as parts, allowing the clear specification of the concurrency architecture.

Figure 1.5 shows a typical structured class called SensoryAssembly. This class
contains internal parts, such as a positioner part (typed by class Gimbal), a Mission-
Tasker part (its class isn’t exposed on the diagram) and a theSensor part (typed by class
Sensor). Some of these parts are themselves structured classes and contain subparts.
In this way, we can construct arbitrarily complex containment hierarchies.

4 Although Rhapsody has been doing this since its initial release.



Introduction 9

A couple of things should be noted in Figure 1.5. First of all, the relation between a
class and its parts is not a relation between classes—it definitely implies a composition
relation between the classes, but the parts are not themselves classes. The class of the
part might define different parts in different structured classes as well. Neither are
parts objects. Every SensorAssembly has this same structure, so it’s not referring to
a specific singular object for its positioner. When we actually create an instance of
the SensorAssembly, a specific singular instance of class Gimbal will play the role
that this part specifies. But the part is not itself an instance. It is really a role that
some instance will play when the system runs, and is typed by a class specification.
The UML provides the term part for exactly this kind of object role.

The second thing to note is the presence of small squares on various class or part
boxes. These small boxes are called ports and are discussed next.
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Figure 1.5 Structured classes
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Ports

Classes may also have features called porss. Ports are named connection points of
classes and, as mentioned before, are typed by the services offered and required

across them.
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/.. 1 itsO2Sensor.02Sensor senorPort
B : O2Sensor
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S getValue():RhpPositive
& getvalue( :RhpPositive

Figure 1.6 Ports

Relations

To achieve system-wide behavior, many objects must work together, and to work
together, they must relate in some way. As part of structural modeling, the UML
defines different kinds of relations among structural elements. We will focus primarily
on the relations between classes, but these design-time relations between specifica-
tions have well-defined relations between instances of those classes.

The UML defines a number of different kinds of relations between classes. The

most important of these are: association, generalization, and dependency.

Associations

The most basic relation is called the association. An association is a design-time
relation between classes that specifies that, at run-time, instances of those classes
may have a /ink (navigable relation between objects through which services may
be invoked). The UML identifies three distinct kinds of associations: association,

aggregatlon, and composition.

Association

An association between classes means simply that, at some time during the execu-
tion of the system, instances of those classes may have a link that enables them to

invoke services from each other. Nothing is stated about Aow that is accomplished,
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Figure 1.7 Class relations

or even whether it is a synchronous method call (although this is most common)
or an asynchronous event signal. Associations are the specification of conduits that
allow objects at run-time to send messages to each other. Associations are shown as
lines connecting classes on class diagrams.

A number of aspects of an association between two classes can be specified. For
example, the ends of the associations may have role names. These name the instances
with respect to the other class. The most common implementation of associations is
a pointer, and it is common to name the pointer with the role name at the opposite
end of the association. For example, in Figure 1.7, the Zarger class might contain
a pointer named izs TargetingSystem that would be dereferenced at run-time, just as
the TargetingSystem class might contain a pointer named 7#s7arget that allows the
TargetingSystem to send messages to the Target. I use the term “might” because
that is a common implementation option, but there are other ways to implement
associations as well.

Although somewhat less common, association labels may also be used, such as
between the Missile Transaction and Missile classes. The label is normally used to help
explain why the association exists between the two classes. In this case, the label
“Controls delivery of >” indicates the purpose of the relation. The “>” is a common
way to indicate the speaking perspective of the label; in this case, it is from the Mis-
sile Transaction to the Missile.
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The multiplicity is probably the most important property of an association end.
The multiplicity of an association end indicates the number of instances that can
participate in the association role at run-time. This may:

¢ be a fixed number, such as “1” or “MAX_DATA_SOURCES”
* acomma separated list, such as “0,1” or “3,5,7”
e arange, such as “1..10”

* a combination of a list and a range, such as “1..10, 25”, which means “one to

ten, inclusive, or 25”

e an asterisk, which means “zero or more”

*

* or an asterisk with an endpoint, such as “1..*”, which means “one or more.”

In the figure, we see multiplicities on all the association ends with the exception
of the directed association between the Missile Transaction and the Target. A normal
line with no arrowheads means that the association is bidirectional; that is, an object
at either end of the association may send a message to an object at the other end. If
only one of the objects can send a message to the other and not vice versa, then we
add an open arrowhead (we'll see later that the type of arrowhead matters) pointing
in the direction of the message flow. The multiplicity at the nonnavigable end (the
end without the arrowhead) is not normally specified. This is because the multi-
plicity at the “pointy end” of an association has influence on the implementation
of the association in the class; you'll implement a 1-multiplicity with a pointer, but
with * you might need an array of pointers. However, if the association end is non-
navigable (as is the case in the “wrong” end of a directed association), then there s
no implementation to change; hence its multiplicity is normally omitted.

All of these association adornments, except for perhaps multiplicity, are optional and

may be added as desired to further clarify the relation between the respective classes.

An association between classes means that, at some point during the lifecycle of
instances of the associated classes, there may be a link that enables their instances to
exchange messages. Nothing is stated or implied about which of these objects comes
into existence first, which other object creates them, or how the link is formed.
Composition, the strong form of aggregation, does allocate create and destruction
responsibilities, as we shall see in a moment.
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Aggregation

An aggregation is a specialized kind of association that indicates a “whole-part”
relation exists between the two objects. The “whole” end is marked with a white
diamond, as in Figure 1.7. For example, consider the classes FlightPath and Posi-
tion. The FlightPath class is clearly a “whole” that aggregates possibly many Position
elements. The diamond on the aggregation relation shows that the FlightPath is the
“whole.” The “*” on the association end indicates that the list may contain zero
or more Position elements. If we desired to constrain this to be no more than 100
waypoints, we could have made the multiplicity “0..100”.

Since aggregation is a specialized form of association, all of the properties and
adornments that apply to associations also apply to aggregations, including naviga-
tion, multiplicity, role names, and association labels.

Aggregation is a relatively weak form of “whole-part,” as we'll see in a moment. No
statement is made about lifecycle dependency or creation/destruction responsibility.
Indeed, aggregation is normally treated in design and implementation identically to
association. Nevertheless, it can be useful to aid in understanding the model struc-
ture and the relations among the conceptual elements from the problem domain.
Sometimes it may not be clear which is appropriate, association or aggregation. In
such cases, don’t worry about it. Aggregation is typically implemented in exactly
the same way as association, so it doesn’t change the implementation. If you cant
decide, pick one and change it downstream if necessary.

Composition

Composition is a strong form of aggregation in which the “whole” (also known as
the “composite”) has the explicit responsibility for the creation and destruction of
the part objects. We've seen the structured class notation in the previous section
between a class and its parts. Composition is the relation between the structured
class and the class of those parts. There is a crucial distinction between aggregation
and composition; in composition, you explicitly assign creation and destruction
responsibility to the composite. For this reason, the multiplicity at the whole end
of a composition relation is @/ways 1. While an object can have multiple aggregation
owners, it can only have at most one composite owner.

Because of object lifecycle responsibility, the composite exists before the parts
come into existence and it exists after they are destroyed. If the parts have a fixed
multiplicity with respect to the composite, then it is common to create those parts
in its constructor (a special operation that creates the object) and destroy them in
its destructor. With nonfixed multiplicities (e.g., “*”), the composite dynamically
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creates and destroys the part objects during its execution. Because the composite
has creation and destruction responsibility, each part object can only be owned by a
single composite object, although the part objects may participate in other associa-
tion and aggregation relations. Composition is also a kind of association, so it can

likewise have all of the adornments available to ordinary associations.

Figure 1.7 shows the filled diamond form, while Figure 1.5 shows the nested
part (structured class) form. As a quick exercise-to-the-reader, redraw Figure 1.5
to use filled diamonds and redraw Figure 1.7 to use the nested part form. To be
semantically correct, the filled diamond must be a relation between c/asses only and
the nested part form is a relation between a class and parts (object roles).

Generalization

The generalization relation in the UML means that one class defines a set of features
that are either specialized or extended in another. Generalization can be thought of
as “is a type of” relation and therefore only has a design-time impact, rather than

a run-time impact.

Generalization has many uses in class models. First, generalization is used as a
means to ensure interface compliance, much in the same way that interfaces are
used. Indeed, it is the most common way to implement interfaces in languages that
do not have interfaces as a native concept, such as in C++. Also, generalization can
simplify your class models because a set of features common to a number of classes
can be abstracted together into a single superclass, rather than redefine the same
structure independently in many different classes. In addition, generalization allows
for different realizations to be used interchangeably; for example, one realization
subclass might optimize worst-case performance while another optimizes memory
size, while yet another optimizes reliability because of internal redundancy. Different
subclasses can be substituted for an instance of the superclass and the collaboration
will still “work.”

Generalization in the UML means two things—inheritance and substitutabil-
ity. First, it means inheritance—that subclasses have (at least) the same attributes,
operations, methods, and relations as the superclasses they specialize. Of course, if
the subclasses were identical with their superclasses, that would be unexciting, so
subclasses can differ from their superclasses in either or both of two ways, special-

1zation or extension.

Subclasses can specialize operations or state machines of their superclasses. Special-
izing means that the same operation (or action list on the statechart) is implemented

differently from in the superclass. This is commonly called polymorphism. In order
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Figure 1.8 Class generalization

to make this work, when a class has an association with another that defines sub-
classes, at runtime an instance of the first can invoke an operation declared in the
second, and if the link is actually to a subclass instance, the operation of the subclass
is invoked rather than that of the superclass.

Figure 1.8 shows a simple example. The 77ack class has a timeOfMeasurement
attribute that identifies when the track was measured, and has composition relations
with both the Velocity and Position classes. This is the base class for technology-specific
tracks, for FLIR (Forward-Looking Infrared), optical, and radar sensors. Each of
these has technology-specific additional data. The TrackFuser integrates data from
three sensors monitoring the same aircraft into a multisensor track. Because these
subclasses inherit features from the base class, they also have compositions with
Velocity and Position classes as well.

The second thing that generalization means is substitutabilizy. This means that
an instance of a subclass is freely substitutable wherever there is an instance of the
superclass. In Figure 1.8, a Track may provide services (such as returning its position,
velocity, or combat ID) to a client. Because MultisensorTrack is a subclass of Track, at
run-time the client of the 77ack class may actually have a link to an instance of the
Multisensor Track class. The client neither knows nor cares, because Multisensor Track
inherits all the capabilities of its superclass.
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Dependency

Association, in its various forms, and generalization are the key relations defined
within the UML. Nevertheless, several more relations are still useful. They are put
under the umbrella of dependency. The UML defines four different primary kinds
of dependency—Abstraction, Binding, Usage, and Permission. Each of these may
be further stereotyped. For example, «refine» and «realize» are both stereotypes of
the Abstraction relationship and «friend» is a stereotype of Permission. All of these
special forms of dependency are shown as a stereotyped dependency (dashed line
with an open arrowhead).

Arguably, the most useful stereotypes of dependency are «bind», «usage», and
«friend». Certainly, they are the most commonly seen, but there are others as well. The
reader is referred to the standard’ for the complete list of “official” stereotypes.

The «bind» stereotype binds a set of actual parameters to a formal parameter list.
This is used to specify parameterized classes (templates in C++-speak or generics in
Ada-speak). This is particularly important in patterns because patterns themselves
are parameterized collaborations, and they are often defined in terms of parameter-

ized classes.

A parameterized class is a class that is defined in terms of more primitive elements,
which are referred to symbolically without the inclusion of the actual element that
will be used. The symbolic name is called a formal parameter and the actual element,
when bound, is called an actual parameter. In Figure 1.9, NumericParameter is a param-
eterized class whose attributes and methods are defined in terms of an unspecified
type, called Base Type. If we bind an actual parameter, say double, to be used whenever
BaseType is used, we now have a class (NumericParameter_double) from which we can
create instances; a fully-bound parameterized class is called an instantiable class, because
we now have enough information to create instances of it. The «bind» dependency
binds the actual parameter, double, to the formal parameter, BaseTjpe.

Parametric classes can be subclassed, as they are in the figure. A SafeNumericPa-
rameter stores the data twice, once normally and once bit-inverted. It’s not yet an
instantiable class because we haven't specified what to use for BaseTjpe yet. We do
that when we create the SafeNumericParameter_double.

The diagram also shows the use of the «friend» dependency. This means that
the SafetyMonitor class has access to all the features of the SafeNumericParameter
regardless of their stated visibility—private, protected, or public. It’s like the old

saying goes, “You only show your friends your private parts.”

5

Available at www.omg.org
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Figure 1.9 Dependency

Big Things: Subsystems, Components, and Packages

Classes, objects, and interfaces are, for the most part, little things. It takes collabora-
tions of many of them to have system-wide behavior. In today’s complex systems, it is
important to think about larger-scale structures. The UML does provide a number of
concepts to manage systems in the large scale, although most of the literature has not
effectively explained or demonstrated the use of these features. And, to be honest, the

UML specification does not explain them and how they interrelate very well either.

Packages are one such element. Packages are used exclusively to organize UML
models. They are not instantiable and do not appear in any way in the running sys-
tems. Packages are model elements that can contain other model elements, including
other packages. Packages are used to subdivide models to permit teams of developers
to manipulate and work effectively together. They define a namespace for the model
elements that they contain, but no other semantics. They are the primary model
organizational units for configuration management—that is, in general, packages are
the primary Cls (configuration items). When you check in or out a package from
CM, you check in all the elements contained within that package. Rhapsody allows
you to change the level of a CI down to the level of the individual class, but most

developers find that too much detail to find all the relevant items to check out.
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A package normally contains elements that exist only at design-time—classes
and data types—but may also contain use cases and diagrams, such as sequence and
class diagrams. These design pieces are then used to construct collaborations that
realize system-wide functionality. Figure 1.10 shows that packages are drawn to look
like a tabbed folder and may optionally show the elements that they semantically
contain. It shows a single class within most packages, but they usually hold dozens
or more elements. The dependency relations are optional but can be used to show

compilation dependency.
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Figure 1.10 Packages

Subsystems are nothing more or less than classes—structured classes, spe-
cifically—and they are large-scale architectural building blocks. Unlike packages,
subsystems are instantiable, meaning that you can create an instance of the type
that occupies memory at run-time. A subsystem is used to organize the run-time
system consisting of instances; the criterion for inclusion in a subsystem is “com-
mon behavioral purpose.” The real work of a subsystem is implemented by the parts
contained within the subsystem; the subsystem offers up the collaborative behavior
of those elements. Subsystems organize and orchestrate behavior of their internal
parts, but the “real work” is done by what is sometimes called the semantic objects of
the system—the primitive objects that actually perform the bottom-level functional-
ity. A subsystem is at a higher level of abstraction of the system than these primitive
semantic objects and this level of abstraction allows us to view and manipulate the
structure and behavior of complex systems much more easily.



Introduction 19

In UML 2.0, components are basically also structured classes that provide opaque
language-independent interfaces. There are some subtle metamodeling distinctions
between components and subsystems, but in use they are practically identical.

Behavioral Elements and Diagrams

What we've discussed so far is the definition of structural elements of the system:
classes and objects (in the small) and systems, subsystems, and components (in the
large). As developers, we are usually even more concerned about how these structural
elements behave dynamically as the system runs. Behavior can be divided up into
two distinct perspectives—how structural elements act in isolation and how they
act in collaboration.

In the UML metamodel, ModelElements are the primary structural elements
that have behavior. Classifiers (which are types of ModelElements) also have Behav-
ioralFeatures, specifically Operations, and the realization of operations, Methods. In
practice, we are primarily concerned with the specification of the reactive behavior
of only certain Classifiers (classes, objects, subsystems, components, and use cases)
and certain other ModelElements (Actions, Operations, and Methods).

Actions and Activities

An action is a “specification of an executable statement that forms an abstraction
of a computational procedure that results in a change in the state of the model, and
can be realized by sending a message to an object or modifying a link or a value of
an attribute.” That is, it is a primitive thing, similar in scope to a single statement
in a standard source-level language, such as “++X” or “a=b+sin(c*PI)”. The UML
identifies a number of different kinds of actions, such as creating an instance, invok-

ing a method, or generating an event.

While the UML specifies what is called action semantics, it doesn’t specify a lan-
guage syntax to use. Some tools use proprietary abstract action languages that are
converted to a target language during the model compilation process. This has the
(claimed®) advantage of portability of the application from one source language to
another. The downside of the approach is that debugging at the code level is usu-
ally very difficult and if you—ever—modify the source code, then the connection
between the model and the code is irretrievably broken. By far, most developers
prefer to specify actions in their intended source language, whether it is C, C++,

¢ Tsay “claimed” because, in practice, the generation of a concrete language with these tools is not as

simple and obvious as it could be, and most of the tools that work this way produce some really ugly
and inefficient code for the target language.
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Java, Ada, or something else. For one thing, they already know that language. For
another, these languages have standards (as opposed to proprietary action languages)
and multiple compilers to support them on many different platforms. Debugging
is far simpler, and bringing code changes back into the model can be relatively easy,
depending on the tool.

Actions have “run-to-completion” semantics, meaning that once an action is
started it will run until it is done. This does not mean that an action cannot be
preempted by another action running in a higher-priority thread, merely that when
the context executing that action returns from preemption, it will continue executing
that action until it is complete. This means that if an object is executing an action,
that action will run to completion even if that object receives events directing it to
do something else. The object will not accept the incoming events until the action
has completed.

An activity is an action that runs when a Classifier is in a state and is terminated
either when it is complete or when the Classifier changes state. That is, activities do
not have run-to-completion semantics. An object executing an activity may receive
an event that triggers a transition, exiting the state and terminating the activity.
Thus, the UML allows the modeling, at a primitive level, of both interruptible and
noninterruptible behaviors.

Operations and Methods

An operation is a specification of an invocable behavior of a Classifier, whereas a
method is the implementation of an operation. That is, an operation is a specifica-
tion of a method. Operations are synchronously invoked and are logically associated
with CallEvents in the UML metamodel. Operations have typed parameter lists, as
you might expect, and can return typed values. It is common to use an operation
call as an action on a state behavior.

Modeling of the behavior of a method is done primarily in two ways. First and
most common is to simply list, in the selected action language, all the actions to
implement the method. This is clearly the best approach for simple methods. The
second approach, which will be described shortly, is to model the operation with

an activity diagram.
Activity Diagrams

In UML 1.x, activity diagrams were nothing more (or less) than a state machine with
a different syntax. That is, both activity diagrams and state machines had a common
underlying behavioral metamodel. In UML 2.0, however, that’s been changed.
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In UML 2.0, activity diagrams execute based on roken execution semantics; that
is, when an activity receives the run token from the activity that precedes it, it can
run. When it is done executing, it passes the token on to the next activity in the
sequence. The transitions from activity to activity (or action to action) are taken
when the predecessor activity completes—no events are used. In Figure 1.11 the
rounded rectangles are actions or activities. The arrows indicate the flow transitions.
The transition with a ball on one end is called the initial pseudostate and indicates
where execution begins when the behavior starts.

Activity diagrams contain operators. The diamonds indicate selection based
on the execution of guards (shown in square brackets). These guards are Boolean
expressions with no side effects. Transition is taken when the guard evaluates to
true. The else transition is taken only if all other transitions are false. The bar with
a single input transition and multiple exiting transitions is called a fork. It differs
from selection in that, with selection, at most one outgoing transition is taken; with
a fork, all outgoing transitions are taken. That is, a fork indicates the presence of
logical threads of execution running simultaneously.” A join, a bar with multiple
incoming transitions, collapses multiple logical threads into one. The termination
state indicates the end of the behavior.

Actions and activities can be owned by various objects; they can invoke meth-
ods from other objects to which they have links. The allocation of the actions and
activities is most commonly done with swimlanes. In the figure, swimlanes are the
named rectangles containing the actions and activities. The name of each swimlane
identifies a class that provides the invoked method.

Another new thing added in UML 2.0 is the notion of pins. Just as an activity (or
action) corresponds to a function, a pin corresponds to a parameter of a function.
Thus, pins can be shown as either the origin of transitions (indicating the passing
of the data to the parameter specified by the pin) or its termination (indicating
the reception of data to the parameter). Pins at the origin of a transition are called
output pins and pins at the termination of a transition are called 7npuz pins. Input
and output pins are indicated in Figure 1.11. Data can also be indicated with object
in state, a notational hangover from UML 1.4. For example, “validatedFlightPlan”
is such an element; its state or condition is shown in square brackets inside the box.

In UML 2.0, it is more common to use pins.

7 Tsay “logical” because they don’t have to be implemented with OS threads. They can be executed

sequentially but they are logically concurrent so the developer cannot know which is executed first.
That is, they are execution-order independent with respect to each other.



22 Chapter 1

Activity diagrams are like flowcharts on steroids. The most common use for
activity diagrams is to model algorithms. As such, their most common applications
are to represent the behavior of a method of a class or the behavior of an algorithmic

use case.
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Figure 1.11 Activity diagram

Statecharts

A finite state machine (FSM) is a machine specified by a finite set of conditions of
existence (called “states”) and a likewise finite set of transitions among the states
triggered by events. An FSM differs from an activity diagram in that the transitions
are triggered by events (primarily) rather than being triggered when the work done in
the previous state is complete. Statecharts are primarily used to model the behavior
of reactive elements, such as classes and use cases, that wait in a state until an event
of interest occurs. At that point, the event is processed, actions are performed, and
the element transitions to a new state.

Actions, such as the invocation of an operation, may be specified to be executed
when a state is entered or exited, or when a transition is taken. The order of execution
of actions is exit actions of the predecessor state, followed by the transition actions,

followed by the entry actions of the subsequent state.
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The UML uses statecharts as their formal FSM representation, as they are sig-
nificantly more expressive and scalable than “classical” Mealy-Moore FSMs. UML
state machines, based on Dr. David Harel’s Statechart semantics and notation,® have
a number of extensions beyond Mealy-Moore state machines, including:

o Nested states for specifying hierarchical state membership
e And-states for specifying logical independence and concurrency
e Dscudostates for annotating commonly needed specific dynamic semantics.

Figure 1.12 shows some of the basic elements of a statechart for dialing a number
with a telephone. It includes basic or-states and transitions, as well as a few less-

elementary concepts, including nested states and initial pseudostates.
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Figure 1.12: Basic state machine
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Transitions are arrowed lines coming from a predecessor state and terminating on
a subsequent state. Transitions usually have the optional event signature and action
list. The basic form of an event signature is:

event-name ‘(" parameter-list )’ ‘[guard]” ‘/* action-list

8 Dr. David Harel, inventor of statecharts, was one of the founders of I-Logix (now a part of Telelogic)

and was instrumental in the creation of the Statemate and Rhapsody tools.
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The event-name is simply the logical name of the event class that can be sent to
an instance of the Classifier at run-time, such as ‘evOnHook’ or ‘tm’ in Figure 1.12.
The UML defines four distinct kinds of events that may be passed or handled:

e SignalEvent—an asynchronously sent event
e CallEvent—a synchronously sent event

e TimeEvent—an event due to the passage of an interval of time (most common)

or arrival of an epoch
e ChangeEvent—a change in a state variable or attribute of the Classifier

Asynchronous event transfer is always implemented via queuing of the event
until the element is ready to process it. That is, the sender “sends and forgets” the
event and goes on about its business, ignorant of whether or not the event has been
processed. Synchronous event transfer executes the state processing of the event in
the thread of the sender, with the sender blocked from continuing until that state
processing is complete. This is commonly implemented by invoking a class method
called an event handler that executes the relevant part of the state machine, returning
control to the sender only when the event processing is complete. Rhapsody refers
to CallEvents as "triggered operations”; they are like normal operations in that they
are synchronous, but don’t have a standard method body. Their method body is the
action list on the state machine.

Events may have parameters, which are typed values accepted by the state machine
which may then be used in the guard and actions in the processing of the event. The
statechart specifies the formal parameter list, while the object that sends the event
must provide the necessary actual parameters to bind to the formal parameter list.
Rhapsody uses a slightly peculiar syntax for passing events. Rhapsody automatically
creates a struct named params that contains the named parameters for every event
that carries data. If an event e has two parameters, x and y, to use these in a guard, for
example, you would dereference the params struct to access their value. So a transition
triggered by event e with a guard that specified that x must be greater than 0 and y
must be less than or equal to 10 for the transition to be taken would look like:

e[params->x>0 & & params->y<=10]

Time events are almost always relative to the entry to a state. A common way to
name such an event (and what we will use here) is ‘tm(interval)’, where ‘interval’

is the time interval parameter for the timeout event.” If the timeout occurs before

9

»

Another common way is to use the term “after(interval)
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another specified event occurs, then the transition triggered by the timeout event
will be taken; if another event is sent to the object prior to the triggering of the
timeout, then the time out is discarded. If the state is reentered, the timeout interval
is started over from the beginning,.

If a transition does not provide a named event trigger, then it is activated by
the “completion” or “null” event. This event occurs either as soon as the state is
entered (which includes the execution of entry actions for the state) or when the

state activities complete.

A guard is a Boolean expression contained within square brackets that follows
the event trigger. The guard should return only TRUE or FALSE and not have side
effects. If a guard is specified for a transition and the event trigger (if any) occurs,
then the transition will be taken if and only if the guard evaluates to TRUE. If the
guard evaluates to FALSE, then the triggering event is quietly discarded and no

actions are executed.

The action list for the transition is executed if and only if the transition is taken;
that is, the named event is received by the object while it is in the predecessor state
and the guard, if any, evaluates to TRUE. The entire set of exit actions—transition
actions—entry actions is executed in that order and is executed using run-to-com-
pletion semantics, as noted previously. Figure 1.12 shows actions on a number of
different transitions, as well as actions on entry for the Dialing state, on exit for the

WaitingForPickup state, and both entry and exit for the OffHook state.

In addition to entry and exit actions, states may have reactions, also known as
internal transitions. These are actions taken when the object is in the specified state
and the triggering event is received, but in this case, the state is not changed. UML
Comments in Figure 1.12 indicate some entry actions, exit actions, and internal
transitions. Rhapsody uses small icons beside the action to indicate when the actions
(on entry, exit, or reaction) inside the state are executed.

If you look at Figure 1.12, the rounded rectangles are states. These are called
or-states because at any level of state machine abstraction, the object must be in
only one of these states. In the figure, the Telephone object can either be LoggedIn
or Ofthook. These are or-states at the same level of abstraction. The initial pseu-
dostate indicates which you start in when the object is created. Rhapsody provides
an IS_IN(state) macro for all state machines; IS_IN(LoggedIn) will return TRUE
if and only if the specified Telephone object is in the LoggedIn state.

The OffHook state is also a composite state and contains nested states, such as Dial-
ing, Connecting, and WaitingForPickup. Within the OffHook state, its nested states
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are or-states; that is, if the object is in the OffHook state, then it must be in exactly
one of the nested states. If the Telephone object is in the WaitingForPickup state, then
not only does IS_IN(WaitingForPickup) return TRUE, so does IS_IN(OffHook).
That is a basic characteristic of nested states; if youre in the bathroom, then yes,
you ARE also in your house, and you can only be in one room of the house at a

time and in one house at a time.

The evOnLine event enters the OffHook and therefore must enter a nested state
as well, but which one? The answer is indicated with the initial pseudostate inside
the OffHook state—it indicates which of those nested states is the default. The
default can be bypassed by drawing a transition directly to a different nested state,
if desired. Note that there are two transitions from the OffHook state back to the
LoggedIn state. They come from the composite, so they apply whenever OffHook
is the current state, regardless of which nested state in OffHook is currently valid.
In Mealy-Moore state machines, which lack nesting, those two transitions would
each have to come from every one of the nested states and go to the LoggedIn state
to provide the same behavior.
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Figure 1.13 And-states

Figure 1.13 shows an important additional concept in statecharts, “and-states.”
While or-states are disjoint and exclusive, and-states are disjoint but not non-
exclusive. These are equivalent to the logical threads in activity diagrams; they
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are usually not actually modeled as separate OS threads, but the order of execu-
tion between the and-states is not inherently knowable. Event receptions have
object-wide scope. This means that if an object has multiple active and-states and
receives an event, a// active and-states receive a copy of the event and are free to act
on that event or discard it as appropriate. Furthermore, the order in which those
and-states process their copies of that event is not known. If you want to specify
a particular sequencing, then use or-states rather than and-states. For idioms for
synchronizing action execution across and-states, and for a more detailed discussion
of UML state machines, refer to Chapter 3 of Real-Time UML, Third Edition'® and
Chapters 7 and 12 in Doing Hard Time."'

Interactions

The UML models the collaborative behavior of multiple entities working together
as interactions. The UML provides three primary diagrams to represent interactions:
communication diagrams (known in UML 1.x as “collaboration diagrams”), sequence
diagrams, and timing diagrams. Communication diagrams are basically object dia-
grams with messages shown with numbers. Sequence diagrams show object roles as
vertical lifelines with message sequences going down the page. Timing diagrams depict
changes in state or value over linear time. Neither communication nor timing dia-

grams are widely used, so we will limit our discussion here to sequence diagrams.

Sequence diagrams depict object roles, which might represent objects, subsystems,
systems, or even use cases, interacting over time. The vertical lines in Figure 1.14,
called “lifelines,” represent the object (or object role). Objects (or object roles) can
both send and receive messages. Messages are shown by the arrowed lines going
from one lifeline to another.

The sequence diagram shows an exemplar or “sample execution” of some portion
of the system under specific conditions. Such an exemplar is commonly called a
scenario. The messages may be synchronous (shown with a solid arrowhead) or
asynchronous (shown with an open arrowhead). Sequence flows, more or less,
from the top of the page downwards. Additionally, state or condition of the lifeline
can be shown, as can constraints. In Figure 1.14, a timing constraint is shown
on the right of the screen. A more general constraint is shown anchored to the
alarm(Gas_Supply_Fault) limiting the types of faults that are reported using this
value.

1 Douglass, Bruce Powel, Real-Time UML, Third Edition: Advances in the UML for Real-Time Systems,
Addison-Wesley, 2004.

Douglass, Bruce Powel, Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frame-
works, and Patterns, Addison-Wesley, 1999.
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Figure 1.14 Sequence diagram

UML 2.0 significantly extends sequence diagrams over previous versions.
Diagrams may contain, essentially, subdiagrams called inzteraction fragments. Each
interaction fragment can have an operator, such as loop, opt (for “optional”),
alt (for “alternative”), ref (for “reference”), par (for “parallel”) and so on. These inter-
action fragments and operators greatly enhance the ability of sequence diagrams as
specification tools. Figure 1.15 shows three interaction fragments. One has a parallel
operator indicating that it contains regions that execute concurrently. Within that
interaction fragment are nested two more, with loop operators indicating that they

repeat until some termination condition is reached.

What I think is the most significant extension to sequence diagrams in UML 2.0
is the ability to formally decompose them. This can be done either “horizontally”
by using an interaction fragment with the “ref” operator, or “vertically” by setting
a reference from one lifeline to a separate sequence diagram that shows the same
scenario at a more detailed level of abstraction. The next three figures show how
these decomposition mechanisms can be used.

Figure 1.16 shows the “high-level” sequence diagram for an industrial robot
system. The user sets up the system and, based on the task plan, the controller
commands the robot to achieve the tasks. The robot itself has internal parts: two
angular joints (called the knee and the elbow) and a rotating manipulator, which
can grab and control tools. This high-level sequence diagram contains two references
to more detailed interactions. The first of these is the “Setup System” referenced
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Figure 1.16 High-level sequence diagram

interaction fragment. If we open up that diagram (a right-click in Rhapsody), we

see the details shown in Figure 1.17.

Even more valuable is the ability to decompose the lifeline. This mechanism allows

the same scenario to be viewed at many different levels of abstraction without over-

whelming the viewer by putting everything on a single, huge diagram. Figure 1.18
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Figure 1.17 Referenced interaction fragment

shows the details of how the internals of the Robot interact to achieve their roles in
this same scenario. The ENV lifeline is the connection between the high- and low-
level interactions. At the high level, a message going to the Robot lifeline comes ouz
of the ENV lifeline on the more detailed diagram. Conversely, a message going 7nto
the ENV lifeline on the more detailed diagram comes out of the Robot lifeline on
the higher-level sequence diagram.
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Figure 1.18 Decomposed lifeline
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Use Case and Requirements Models

A use case is an explicitly named capability of a system or large-scale element of a
system. It is a collection of operational and related quality of service requirements
around a functional aspect of the system. It should return a result to one or more
actors, and should not reveal or imply anything about the internal implementation
of that functionality. In a medium-sized system, a use case might represent 8-20
pages of detailed requirements.

There are two different kinds of requirements typically applied against a system
or system element: functional requirements and so-called nonfunctional or quality
of service (QoS) requirements. Functional requirements refer to what the system
needs to do, as in “The system shall deliver the anesthetic drug Halothane in inhalant
form.” QoS requirements refer to sow well the functional aspects are to be achieved,
as in “The system shall deliver the anesthetic drug Halothane in inhalant form and
maintain the commanded gas concentration within 0.5% by volume. From a drug-free
gas concentration, a maximum of 10% by volume shall be achieved in no less than
10 minutes at a breathing rate of 10 breaths/minute and a tidal volume of 600 ml.”

Use cases are drawn as ovals that associate with actors, indicating that the realizing
collaborations interact in meaningful ways with those specified actors. In addition,
use cases may relate to other use cases, although the novice modeler is cautioned
against overuse of these relations.'? The three relations among use cases are general-
ization (one use case is a more specialized form of another), includes (one use case
includes another to achieve its functional purpose), and extends (one use case may
optionally add functional aspects to another). An example of a use-case diagram for

a medical anesthesia system is shown in Figure 1.19.

Since a use case provides little more than a name and relations to actors and other
use cases, the detailed requirements must be captured somewhere. The Harmony
process refers to this as “detailing the use case.” There are two complementary
approaches to detailing use cases—by example and by specification. In both cases,
however, the internals of the structure of the system cannot be referred to, since the

requirements should be captured in an implementation-free manner.

12 In the author’s experience, it is all too easy to use the use-case relations in a misguided attempt to

functionally decompose the internals of the system, which is ot the point. The purpose of use cases
is to define the functional behavior of a system, subsystem, or other large-scale classifier in an imple-
mentation-free way.
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Figure 1.19 Use-case diagram

Use cases may be thought of as “bags” that contain related detailed requirements.
These requirements, as mentioned above, may be a combination of functional and
QoS requirements. These details are captured in one or both of two ways: scenario

modeling with sequence diagrams or specification, especially with state machines.

Scenario modeling of use cases involves the creation of sequence diagrams that
capture different scenarios of the use case. Each scenario captures a very specific
system-actor interaction. These scenarios capture messages sent to the system from
the actors and from the system to the actors, as well as the allowable set of sequences

of such messages.

When doing scenario modeling, it is important to remember the purpose is to
capture requirements, not to functionally decompose the internals of the system.
Therefore, for requirements scenarios, the only classifiers that may appear are the
system actors and the system or the use case, not pieces internal to the system. In
the case of subsystem use cases, then peer subsystems are treated as actors to the
subsystem of concern.



Introduction 33

The other approach to requirements capture is via specification. The specification
may be done in hundreds or thousands of textual statements but text is best used in
conjunction with a more formal language, such as statecharts or activity charts, to
define all possible scenarios. When statecharts are used in this way, messages from
the actors are represented as events on the statechart while messages from the system
to the actors are shown as actions on the statechart.

Summary

That’s it—your brief refresher on UML! Classes and objects are the usual things
that people first consider when they think about the UML bug, clearly, the UML is
more expansive and expressive than this. The UML also includes primitive behav-
iors—actions and activities—and ways to specify the allowable sequences of their
execution with activity diagrams and state machines. The UML provides means for
showing example interaction, primarily with sequence diagrams as well. Finally, use
cases cluster requirements into usable, coherent functional units. This chapter was
not meant to be your only introduction to the UML. Although we hit the high-
lights, we didnt go into much depth, and many useful features of the UML weren't
discussed at all. As mentioned previously, this book is meant to be a companion
volume to the author’s Real-Time UML, Third Edition, and the interested reader is
referred there for more detail on the UML.

The UML is a language and is intentionally process-agnostic. Any reasonable
process can be used effectively with the UML. However, not all processes are equally
effective. In the next chapter, we'll discuss one process, called the Harmony process,
that has been developed by the author, in collaboration with others over the years,
and applied very effectively in the development of real-time and embedded systems.
The problems and answers that come later in this book will follow, more or less, the

Harmony process, so the next chapter will provide a brief introduction.

Check Out the CD-ROM

This book contains a CD-ROM with various things on it, such as the models worked
on in this book and a trial copy of Rhapsody. All of the examples in this book are
modeled in Rhapsody. Check out the README.TXT file on the CD-ROM for
instructions on how to install the tool as well as how to get the required license. You
don’t need to use Rhapsody to work on these problems, but it is recommended.

Rhapsody is a very powerful and highly capable tool. Once you've installed it,
I highly recommend that, before you start trying to solve the problems presented in
this book, you spend time going through the enzire tutorial to learn how to “drive”
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the tool, where things are in the menu structure, how to do execution and debug-
ging, and so on. To get to the tutorial, run Rhapsody, then select Help — List of
Books. In that list, you will see Rhapsody in C++ Tutorial. Select that (or whichever
language you want to use) and go through the entire tutorial. It will make perform-
ing the exercises much, much easier. Don’t worry—T’ll wait patiently until you get

back! ©



The Harmony Process

What you will learn:
+  The Harmony development process
- Why process?
- Harmony process overview
= Key enabling technologies
m  Process timescales
- Harmony process variants
- Harmony microcycle in detail

= Party!

= Analysis

= Design

= Translation

= Test
Introduction

A methodology consists of a language to specify elements and relations of interest and
a process that tells the developer what parts of the language to use, how to use them,
and when to use them. The Harmony process' uses UML and variants, such as the
Systems Modeling Language (SysML) or the Department of Defense Architecture
Framework (DoDAF) UML profiles, as the language. The Harmony process also
specifies an integrated set of workflows to guide the developer so that they can use
the UML to its fullest advantage in developing robust, capable, and safe systems.

1

The Harmony process is basically the next revision in the ROPES (Rapid Object-oriented Process
for Embedded Systems) process, discussed in the author’s previous books with greatly expanded
coverage for systems engineering.

35
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There is a very broad range of development processes in use today, from “We don’t
need no stinking process” to very formal rigorous processes. This chapter begins the
discussion with an overview of the two major variants of the Harmony process, and
then gives detailed workflows for each of the phases in the process.

Beginning with the next chapter, problems will be presented for you to work on.
The set of problems is presented, roughly, in the order in which they appear when
you follow the Harmony process. The order of these problems may vary from how
they would appear to you if you follow a different process.

The Harmony Development Process

A process is an integrated set of workflows. Each workflow takes some aspect,
typically a phase in the process, and elaborates what activities are necessary for the
workers to accomplish, when and how they are going to accomplish it, and what
artifacts they generate.

A good process provides guidance on an effective way to develop high-reliability
systems at minimal costs. Far too many processes are either completely under-specify
workflows or waste valuable developer time and resources doing the wrong things,
such as generating reams of paperwork. A good process usually produces some paper
artifacts, but only those that add value, and even then in a cost-effective manner.

Why Process?

The basic reason why we, as software and system developers, should be concerned
about and use a good process is to improve our lives and our products. Specifically,

a good process:

e DProvides a project template to guide workers through the development and
delivery of a product
* Improves product quality in terms of

Decreased number of defects

Lowered severity of defects

— Improved reusability

Improved stability and maintainability
* Improves project predictability in terms of
— Total amount of effort
— Length of calendar time required for completion

¢ Communicates project information appropriate to different stakeholders in ways

that allow them to use it effectively
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If you have a process that doesn't achieve these goals, then you have a bad process
and should think about changing it for the better. These goals can be achieved with
a good process or they can be inhibited by a bad process.

So, what’s a process? In Harmony, we define a process to be:

A process is the specification of a sequenced set of activities performed by
a collaborating set of workers resulting in a coberent set of project artifacts,
one of which is the desired system.

A process consists of worker roles, the “hats” worn by workers while doing various
project activities. Each activity results in the creation or modification of one or more
artifacts. For example, most processes have requirements capture (activity) somewhere
early on before design occurs. This is performed by a requirements analyst (worker)
acting as a software modeler (a worker role), and might result in an artifact, such asa
portion of the software model from which code will be generated. Figure 2.1 depicts
these fundamental aspects and relations inherent in a development process.
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Figure 2.1 Basic elements of process

The activities are the tasks that the worker does in performance of his or her
duty. The activities are grouped together into workflows focused around a common
thread, such as the work done:

* ina development phase

* to achieve a specific goal
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* to create a specific artifact
* by a particular worker role.

A process is normally organized into phases, which might be thought of as
the largest-scale activities. Each phase is specified with one more workflows. Each
workflow is a sequenced set of activities—simple tasks performed by workers—with
resulting artifacts. A common way to represent workflows is with UML activity
diagrams, and that approach will be followed here.

Artifacts are the things created or modified during activities. The singular most
important artifact is The System being produced but there are many others, such
as the source code, the software model, the requirements specification, test vectors,
and so on. Generally speaking, every activity results in the creation or modification
of at least one artifact.

The Harmony process, described in more detail in the next section, is applicable
to (and in current use in) projects of widely different scale. Harmony achieves this
scalability in a couple of different ways. First, the process is viewed at multiple
timescales—macro, micro, and nano. Smaller projects will give much more atten-
tion to the micro and nano cycles, but as the projects grow in size, more attention is
shifted to the macro scale to organize and orchestrate the entire development process.
Secondly, a number of artifacts are optional and created during the process only as
needed. Hazard analysis, for example, is only used for safety-critical applications.
The subsystem architecture view, for another example, is only created when systems
are large enough to profit from such decomposition. In fact, the Harmony process
has two major variants: one, called the Full Harmony process, includes a detailed

Initial analysis to final delivery.
Macrophase Typically 1 vr to several vears.
‘ocus on key concepts ‘
i on Macro
on refinement of concepts
on design and implementation
5 on optimization & deployment
Micro @ MICI‘O@ Mlcro@ Mlcro@
Nano |Nano |Nano [ Nano |Nano kflo Nano|Nano |Nano [Nano [Nano | Nano
Rev of a process step within a Single iteration resulting in a
1)!1asc of the .micmcycla single prototype.
Typically 30 minutes to 1 day. Typically 4-6 weeks.

Figure 2.2 Harmony process timeframes
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systems-engineering process that precedes the subsystem development, and another,
called Harmony-SW, focuses on software development only.

Despite its well-known problems, waterfall lifecycle is still by far the most com-
mon way of scheduling and managing projects. Nevertheless, the most fundamental
issue with the waterfall lifecycle is that defects introduced early in the process are not
identified or fixed until late in the process. Certain kinds of strategic defects—require-
ments and architectural defects, specifically—are three or four orders of magnitude
more expensive to repair in the waterfall lifecycle because they have broad sweeping
implications. This is inherent in the waterfall lifecycle because testing comes at the
end. The longer you wait to identify and repair defects, the more they have become
entrenched and the greater the number of dependencies on the flawed aspects. Put
another way, the problem with the waterfall lifecycle is that it fundamentally assumes
each step in the process can be completed more-or-less without serious defects, but
in fact that is demonstrably untrue. When the defects are finally identified and
repaired, the cost is very high.

The spiral (also known as the iterative) lifecycle has become popular to address
the concerns associated with the waterfall lifecycle. The basic advantage of the spiral
lifecycle is that the system is tested far earlier and far more often. This results in the
identification and repair of defects much earlier and at a significantly reduced cost.
The spiral lifecycle essentially breaks up the development project into a set of smaller
projects, and incrementally adds capabilities to the system, but not before validating
the ones already present. Each addition of a set of capabilities is called a “spiral” or
“increment.” Each of these subprojects is more limited in scope, is produced with
much greater ease, and has a much more targeted focus than the entire system. The
result of each spiral is what Harmony calls an iterative prototype—a functional,
high-quality system that may not be as complete (or perhaps not done in as high
fidelity) as the final system. Nevertheless, the prototype does correctly implement
and execute some portion of the requirements and/or reduce some set of risks and
contains the actual code that will ship with the product, once complete.

The Harmony process can be conceptualized as occurring simultaneously in three
different scales or time frames (see Figure 2.2). The macrocycle process occurs over the
course of many months to years and guides the overall development from concept to
final delivery. The Harmony macro process has four primary, but overlapping, phases.
Each macrophase actually contains multiple microcycles,” as we will see shortly, and
the result of each microcycle is the production of an iterative prototype.

2

That is, spirals.
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The macrophases are a way to show that the missions of the prototypes tend to
evolve over time in a standard way. The early prototypes tend to focus on key con-
cepts, such as requirements, architecture, or technology. The next several prototypes
introduce and focus on the secondary concepts of requirements, architecture, and
technology. After that, the focus shifts to design and implementation concerns.
The last set of prototypes emphasizes optimization and deployment (in the target
hardware and in the customer’s environment). The shift in focus of the prototypes
tends to be gradual, hence the overlapping nature of the macrophases. If required,
Preliminary Design Reviews (PDRs) and Critical Design Reviews (CDRs) are easily
incorporated into the process. Usually a PDR occurs at or near the end of the first
macrophase and a CDR occurs at or near the end of the second macrophase.

Each macrocycle contains several microcycles, or spirals. Each microcycle is fairly
short, usually completing within 4-6 weeks. Each microcycle is focused around the
production and delivery of a single incremental prototype with limited but high-
quality functionality. This is most commonly focused around one or a small number
of use cases, but may also include specific risk-reduction activities.

Within the microcycle, the developers work to produce the high-quality object
collaborations that realize the use cases of the prototype. During this process, the
increasingly complete collaborations are executed dozens to hundreds of times.
This very short execution cycle—in the order of minutes to hours (at the long
end)—is called the nanocycle. If an object collaboration will ultimately consist of
100 objects, experience has shown—clearly—that the best way is NOT to put down
all 100 objects and say “Oh God, I Hope This Works™ but instead to start with one
(incomplete) object and get that to work in isolation, through model execution.
Then add another object and get them to work together. Then refine the objects,
or add a third; and so on, making small enhancements to the capabilities supported
in the collaboration but validating, through execution, each small incremental step.
Executable modeling tools, such as Rhapsody™, make this process highly efficient.
The basic premise of the nanocycles is to make tiny incremental steps and demon-
strate through execution that they are right before adding the next. The so-called
“agile processes” such as the Extreme Programming (XP) approach focus almost

exclusively on the nanocycle scale of development.

> Prayer might be a wonderful thing, but is outside the scope of this book. My observation is that it

does not lend itself to the development of high-quality software. ;-)
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Harmony Process Overview

Note: The version of the Harmony process described in the remainer of this
chapter is version 1.5; it is under configuration management at Telelogic so
that users can be sure that they have a coherent set of artifacts that are inter-
nally consistent. It is anticipated that over time, the process will be further

modified and updated.

The Harmony process is a general systems-development process that, while empha-
sizing the real-time and embedded-software development aspects, includes the steps
to produce general-purpose software and systems. The Harmony process has been
used effectively on very small 1-3 person projects as well as large teams consisting
of hundreds of team members. Harmony is a highly scalable “medium-weight”
process, striking a balance between static heavyweight processes and lightweight,
so-called “agile methods” such as Extreme Programming (XP), while incorporating

aspects of both.*

The Harmony process comes in two generic forms. The first is intended for proj-
ects that are larger in scale and have significant hardware-software codevelopment.
Because of the long lead times necessary for the development of mechanical and
electronic components, it is important that all the requirements be fully described
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4 The “nanocycles” timeframe in the process corresponds to the agile method’s primary scale of concern.
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and understood and the overall architecture be well defined before any significant
design occurs. For this reason, the general Harmony Process Macrocycle is a hybrid
of the classic “V” cycle and a spiral, as shown in Figure 2.3.

The general form of the Harmony process shown in Figure 2.3 has an upfront
effort—referred to generically as “systems engineering” in which the requirements
are fully specified and organized into use cases, the subsystem architecture is defined,
the requirements are allocated to the subsystems, and, at the subsystem level,
requirements are allocated to the engineering disciplines of mechanical, electronic,

chemical, and software.

The systems engineering portion of the general Harmony Hybrid-spiral was
developed primarily by Dr. Hans-Peter Hoffman, Chief Systems Methodologist for
Telelogic. He and I worked together for a number of years to create a fully integrated
systems and software process; the result of that work we called the Harmony process
because it harmonizes the systems and software engineering disciplines together into
a single coherent process. The three phases in the systems engineering part of the

process are shown in Figure 2.4.
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Figure 2.4 Systems engineering phases of the Harmony Hybrid-spiral

After the systems engineering phases, the incremental development cycle can
begin. At this point, the two variants of the process, General Harmony and Har-
mony-SW, are remarkably similar. There is an important difference in the analysis
phases: in the general process, previously detailed use cases are selected and used
as the basis for the prototype development, while in the software-only process, the
as-yet-unspecified use cases must be detailed as a part of the spiral. Other than that,
the spirals are essentially identical.

The spiral part of the process is shown in Figure 2.5.
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In the General Harmony process, the prototype definition phase within analy-
sis is simply a matter of selection of the use cases previous specified in the systems
engineering work. In the software-only spiral model, these use cases have been
identified (named and given a single paragraph mission statement) but the detailed
requirements for those use cases have not yet been specified. In this latter case, the
first part of the spiral details the use cases so that they are fully specified.

The next two sections provide the workflows for each of these phases. UML
activity diagrams are used to show process activities, flows, and artifacts.

The Systems Engineering Harmony Workflows in Detail

The Harmony Microcycle has been discussed from an overview perspective, but in
order to understand how to use the process, it is necessary to understand in more
detail the work activities and artifacts produced.

System Functional Analysis

Figure 2.6 shows the system functional analysis workflow. It basically specifies that
the use cases are taken, whether one at a time or simultaneously, and a use case model
is constructed for each. This means that an executable model is constructed using
semantically complete modeling provided by the UML. The details of how that is
done are discussed in the next section. Each use case is validated via execution to
ensure that it is complete, correct, consistent, and accurate.
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This can be done incrementally—that is, the use-case model becomes increasingly
complete and use cases are added to it, and the entirety of the model is validated at
each step—or it can be done as separate use cases, then added together later. If the
latter approach is used and the use cases are not fully independent, then it is possible
for inconsistencies among the use cases to arise. In that case, a use-case consistency
analysis is done by adding the use cases together into a single requirements model
and executing that model as an integrated unit.

The reader should note that we will use objects to represent the use cases, and
detail their interactions with sequence diagrams and specify their behavior with
state machines and/or activity diagrams. The fact that we are using these semanti-
cally precise languages for modeling does not mean that we are doing design! This
is a common misunderstanding by many people. The use of a semantically precise
language, such as state machines, has nothing to do with what we are saying, merely
that we are using a precise language to say it. In this context, we use semantically
precise languages to specify the requirements but say nothing (yet) about design or

implementation concerns.

Functional Analysis
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Figure 2.6 System functional analysis workflow

Build the Use-Case Model Workflow

One of the steps in the previous workflow (Figure 2.6) was “Build the Use-Case
Model.” That step is detailed in the next workflow (Figure 2.7). The workflow shows
three alternative approaches that represent personal preferences. By the end of the
workflow, you'll have created sequence diagrams showing the typical and exception

interactions of your system with its environment, a summary of those sequences in
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an activity diagram, and a state machine providing an executable behavioral model
of an object that represents the system use case.

Why represent the use case as an object? Use cases are themselves Classifiers in
the UML and can have behavioral dynamics, such as state machines. However, you
can show neither interfaces nor ports on use cases. Thus, we find it convenient for
technical reasons only to model the use case with an object for this purpose. The
object is nothing more than a notational convenience and can be thought of as a

“use case” with a different notation.

This analysis is called “black box” because the internal structuring of the system
isn’t known or used at this time. In the next workflow, we’ll go “open box,” identify-

ing subsystems and allocating functionality to them.

Build Use Case Model
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Figure 2.7 Build use-case model workflow

System Architectural Design

The next workflow is to specify the overall system architecture. This is done by
identifying coherent functional blocks, represented as subsystem objects, along
with their connection points (ports) and interfaces. The operational contracts (“op
cons”) are allocated to these subsystems. At this point, each subsystem is still “mixed
discipline”—that is, it contains elements from various engineering domains, such as
electronics, mechanical, and software. These subsystems are validated by executing
them together and showing how they collectively reproduce the very same “black
box” scenarios specified in the previous workflow. Note that “op cons” in the figure
refers to operational contracts (service specifications in interfaces), BB is “black box”

and WB is “white box” (i.e., subsystem level).
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System Architectural Design
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Figure 2.8 System architecture design workflow

Subsystem Architectural Design Workflow

The last workflow described in this brief process overview is subsystem architec-
tural design (see Figure 2.9). The services are allocated to various discipline-specific
components (mechanical, electronic, software, and so on); if they are not met by
a single engineering discipline, then they must be decomposed (usually with an
activity diagram) until they do. The interfaces between these components is speci-
fied at a high level but will be detailed more fully (e.g., port or memory addresses,
bit-encoding, pre- and post-conditions) once the process enters the spiral portion

of the process.

This workflow has three entry points. The first is to not create subsystem-level
use cases but just to work forward from the allocated operational contracts (alterna-
tive 1 in the figure). The second entry point starts with the system-level use cases
and decomposes them with «include» dependencies. Each use case is decomposed
into a set of use cases, each of which will be satisfied in its entirety by one subsys-
tem. Generally, each system use case decomposes into one or more use cases for
each subsystem. This process is repeated for each system-level use case. At the end
of that effort, each subsystem has a set of use cases that it must fulfill so that the
system can fulfill its use cases. The last entry point (alternative 3) is a “bottom
up” approach in which the set of operational contracts are clustered together into
coherent units (use cases). I personally prefer alternative 2 but if the subsystems
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Figure 2.9 Subsystem architecture design

are simple, alternative 1 might be adequate. Other engineers may prefer alternative
3 when the subsystem is complex enough to warrant having its own use cases but
prefer not to work top-down.

The Incremental (Spiral) Development Workflows in Detail

At the end of the workflows in the previous section, the model is handed off to the
interdisciplinary subsystem teams and work enters the incremental development cycle
(aka, microcycle or spiral). In this section, we detail only the software workflows of the
spiral, but the reader should understand that, in the general Harmony hybrid-spiral,
engineers of other disciplines are concurrently working in an incremental fashion
as well. Integration occurs in the testing phase of the spiral, and this integration
may include mechanical, chemical, electronic, and software disciplines. There may
not be hardware components to integrate in any specific spiral, but there often is.
It might be breadboard or wire-wrapped electronics, with mock-up or hand-built
mechanicals, or first-run factory electronic and mechanical components. The point
is to avoid the shotgun integration at the end of the project and plan for incremental

integration as early as possible.



48 Chapter 2

Increment Review (Party!) Workflow

The spiral starts in the increment review phase (also known as the party phase®). This
phase is where the primary project planning and on-going assessment activities take
place. Remember that there are two forms to the Harmony process. In the general
form, the first time into the spiral, the software, the general schedule, software devel-
opment plan, configuration management plan, reuse plan (if any) are defined. In the
Harmony-SW variant, project scope and engineering approach are also selected and
defined, and the system use cases are identified and given a one-paragraph mission
statement. However, in this latter case, the use cases are not detailed—that takes
place in the analysis phase of the spiral (described in the next section).

In subsequent spirals, the project and system are assessed against those plans
and the plans modified as necessary. The primary artifacts assessed during the party

phase are:

* Schedule

*  Architecture
*  Process

e Risks

* Next Prototype Mission

One of the more serious project management mistakes made is inadequate assess-
ment and adjustment of projects during their execution. As DeMarco and Lister
note, “You cannot control what you do not measure.®” It is equally important that
you apply the measured information to make adjustments. In terms of schedule,
such adjustments will be things like reassignment of resources, reordering activi-
ties, deletion of activities, reductions (or enhancements) of scope and/or quality,

rescheduling subsequent activities, and so on.

Because the selection and implementation of a good architecture is crucial to the
long-term success of a project and product, the party phase evaluates architecture
on two primary criteria. First, is the architecture adequately meeting the needs of
the qualities of services that are driving the architectural selection? Second, is that

architecture scaling well as the system evolves and grows? The process of reorganizing

The party phase corresponds to both initial concept and post-mortem assessment phases in some
other development process models. The use of the term “party” is to reinforce the notion of “celebra-
tion of on-going success” rather than a post-mortem “figure out why it died” analysis.

DeMarco and Lister, Peopleware: Productive Projects and Teams, New York, New York, Dorset House
Publishing Company, 1987.
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the architecture is called refactoring the system. 1f the project team finds that the archi-
tecture must be significantly refactored on each prototype, then this is an indication
that the architecture is not scaling well, and some additional effort should be given
to the definition of a more scalable architecture.

Early on in the project, selections are made about how to manage the proj-
ect—what tools will be used, where they and their data are located and how they
are accessed, security procedures, artifact review and quality assessment procedures,
work and artifact guidelines, etc. The Party phase seeks to improve the efficiency
of the process during the project by actively looking for and correcting problems
and issues.

In my experience, the biggest single reason for project failure is ignoring risks.
To manage risks, we recommend each project maintain a risk management plan. In
this plan, each risk is identified and ranked and, where appropriate, a risk-mitiga-
tion strategy is described. Most of these will be activities to be done in the spirals to
explore, reduce, or handle the risk. In the Party phase, the risk management plan is
reviewed and newly identified risks are added.

Lastly, although the plan for the prototype mission is decided early on (and
scheduled against), this plan is reviewed and possibly adjusted each iteration. It
is common to make minor adjustments to the mission scope but, if nothing else,
explicitly reviewing the plan ensures everyone knows what to do over the next 4-6
weeks it takes to complete the microcycle.

Increment_Review ("Party Phase")

Schedule_Review Process_Review
L J
k r — .
H (ArchitectureﬁReview} Risk_Review
L T )

:
5

Figure 2.10 Increment review (party phase)
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Analysis with the Harmony Process

The purpose of analysis is to define the essential properties of the system to be
developed. The use of the term “essential” means that it defines the properties that,
if missing, indicate the system is wrong or incomplete. In model-driven architec-
ture (MDA)” terms, we are constructing a platform independent model (PIM) of
the prototype capabilities in the analysis phase. The two primary workflows in the
analysis phase of the spiral are the prototype definition and object analysis.

Prototype Definition Workflow

In the General Harmony form, this workflow is rather trivial—collecting the already
completely defined use cases that will be added to the prototype in this iteration.
In the Harmony-SW form, the use cases have been identified but not detailed, and
so at this point the use cases being realized in this prototype must be completely
detailed (the ones that will be realized in later prototypes are ignored for now). We
will focus just on the Harmony-SW form in this section. The workflow for this
effort is provided in Figure 2.11.

In this phase, the requirements of the current prototype are identified and cap-
tured in detail. The use cases for the prototype have already been identified, but the

detailed specification of what the use cases contain has not yet been created.

There are two primary ways to detail a use case: by example and by specification.
By “by example,” we mean that a (possibly large) set of scenarios is created that
illustrates typical and exceptional uses of the system for the use case in question.
The advantages of scenarios are that they are easy for nontechnical stakeholders to
understand and they can serve as a basis for the set of test vectors to be applied later
to the completed prototype. The disadvantages of scenarios are that requirements of
a use case are spread out over possibly dozens of different sequence diagrams rather
than being in a single place, and the requirements may be difficult to represent
concisely. Additionally, some requirements, such as “The tank shall be painted with
a green camouflage-scheme,” are not really behavioral. They are merely characteris-
tics that are either true or not, of the resulting system.® Scenarios are almost always
represented with UML sequence diagrams.

The other approach to detailing use cases is “by specification.” This specification
may be informal, using text to describe the requirements of the use case, or a formal

7 See www.omg.org for a set of standards that define MDA.

& Such requirements are called “system parametric” requirements and trace not to use cases (as do

functional and quality of service requirements) but instead to the System object.
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behavioral language such as UML state machines or UML activity diagrams. The
advantages of detailing use cases by specification are that it is concise, it can be made
more precise than scenarios typically are, and it is easy to represent requirements
that are difficult to show in scenarios. The disadvantages are that it is more difficult,
particularly for nontechnical personnel, to understand, and directly relating the
requirements to the design may also be more difficult. For continuous and piecewise
continuous behavior required, we recommend using control law diagrams or activity
diagrams to represent the continuous behavior of these individual use cases.

We find it best to use both informal text and formal languages together for the
use-case specifications. Natural language is excellent at explaining “why” because
it is both rich and expressive. However, it is also vague, ambiguous, and imprecise.
Formal languages excel in precise statements about “what” is needed. A combination
of a precise formal description, such as with a state machine, coupled with explana-
tory text is the best of both worlds.

Both exemplar and specification approaches are useful, and in fact the Harmony
process recommends that both be used together. A formal specification using state
machines or activity diagrams captures the requirements concisely, while scenarios
derived from the formal specification can aid the nontechnical stakeholders in under-
standing the system. Further, the scenarios derived from the formal specification may
be used to generate the test vectors for validation at the end of the microcycle.

Requirements’ are detailed using a combination of:
* Sequence diagrams
*  State machines
* Activity diagrams
* Control law diagrams (non-UML)
* Textual descriptions
*  Quality of service (QoS) constraints

* (SysML) requirements diagrams

The UML does not have the notion of a “requirement” as a first-order concept. In the Systems
Modeling Language (SysML), a recently released UML profile specialized for systems engineering,
requirements elements are explicitly representable. For more detail, see www.omg.org,
www.ilogix.com, or wwuw.telelogic.com.
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Figure 2.11 Prototype definition in the Harmony-SW process variant

Object Analysis Phase

A use case can be thought of as a bag that contains a set of detailed requirements
relating to a single system capability or operational usage. The realization (imple-
mentation in UML-speak) of a use case is a collaboration, a set of objects working
together to achieve this coherent set of requirements.

Object analysis in the Harmony process constructs this collaboration of essen-
tial objects, and is performed a use case at a time. This means that for the current
prototype, one collaboration is constructed for each use case implemented by the
prototype. In MDA terms, the essential model is called the platform independent
model (PIM). The Harmony process constructs the PIM in an incremental fashion,
one (or a few) use case(s) at time. This is illustrated in Figure 2.12.

In the Harmony process, the “Here be dragons” step is labeled “Apply Object
Identification Strategies.” Table 2.1 lists and briefly describes these strategies. We
have found these strategies to be a remarkably effective way to identify the essential
classes and objects within a collaboration. The application of these strategies will
be the subject of Chapter 5.
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Table 2.1 Object discovery strategies

Strategy

Description

Underline the noun

Used to gain a first-cut object list, the analyst underlines
each noun or noun-phrase in the problem statement
and evaluates it as a potential object.

Identify causal agents

Identify the sources of actions, events, and messages;
includes the coordinators of actions.

Identify services
(passive contributors)

Identify the targets of actions, events, and messages
as well as entities that passively provide services when
requested.

Identify messages and
information flow

Messages must have an object that sends them and an
object that receives them as well as, possibly, other objects
that process the information contained in the messages.

Identify real-world Real-world items are entities that exist in the real world,

items but are not necessarily electronic devices. Examples
include objects such as respiratory gases, air pressures,
forces, anatomical organs, chemicals, vats, etc.

Identify physical Physical devices include the sensors and actuators pro-

devices vided by the system as well as the electronic devices they
monitor or control. In the internal architecture, they
are processors or ancillary electronic “widgets.” This is a
special kind of the previous strategy.

Identify key concepts | Key concepts may be modeled as objects. Bank accounts

exist only conceptually, but are important objects in a
banking domain. Frequency bins for an on-line auto-
correlator may also be objects.

Identify transactions

Transactions are finite instances of associations between
objects that persist for some significant period of time.
Examples include bus messages and queued data.

Identify persistent

Information that must persist for significant periods of

information time may be objects or attributes. This persistence may
extend beyond the power cycling of the device.

Identify visual User-interface elements that display data are objects

elements within the user-interface domain such as windows, but-

tons, scroll bars, menus, histograms, waveforms, icons,
bitmaps, and fonts.
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Table 2.1 Object discovery strategies (continued)

Strategy Description

Identify control Control elements are objects that provide the interface

elements for the user (or some external device) to control system
behavior.

Apply scenarios Walk through scenarios using the identified objects.
Missing objects will become apparent when required
actions cannot be achieved with existing objects.

Care should be taken to minimize the introduction of design elements during
analysis. Limit the collaboration at this point to elements which clearly must be
present in the object analysis model. For example, if the collaboration is to model
the use case “Manage Account” for a banking system, then if the collaboration
does not contain objects such as Customer, Account, Debit Transaction and Credit
Transaction, then youd say it was wrong. In a navigation system, you would expect
to see concepts, represented by objects or their attributes, such as Position, Direc-
tion, Thrust, Velocity, Attitude, Waypoint and Trajectory. The goal is to include
only the objects, classes, and relations that are essential for correctness and not to
include design optimizations.

A key question arises during the construction of the object collaboration: “Is this
right?” Are the concepts properly represented? Are the relationships among those
concepts correct? Do they behave appropriately? The answer to these questions is
answered rapidly during the nanocycle. You can see the Harmony Spiral Nanocycle
activity in Figure 2.12. The idea is to make tiny incremental changes and then quickly
execute the collaboration to make sure that you got it right. You can really only
evaluate the correctness of an object model via execution and test. With executable
modeling tools such as Rhapsody, this is very fast and easy.

The nanocycles consist of generating and executing the object analysis model
while it is in various stages of completion, rather than waiting until the end. Testing
becomes a continuous process rather than something done only at the end, result-
ing in higher-quality systems with less effort and in less time. Take the sequence
diagrams used to show requirements scenarios, elaborate them with the objects just
created and demonstrate, via execution, that they fulfill the expected roles within that
scenario realization. This is the key concept behind agile methods, such as extreme
programming—make tiny steps and validate them before you move on.
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Design with the Harmony Process

An analysis model defines a coherent set of required properties of the system under
development. These are represented as a set of use cases and its details (e.g., sequence
diagram, state machine, activity diagrams, quality of service constraints) and as a
collaboration of essential objects roles whose correctness is verified through execution
and test. The object analysis model is driven primarily by the functional require-
ments and is demonstrated to be functionally correct. It is not, in general, optimal.
That optimality is introduced in design.

A design model is a concrete blueprint for exactly how the essential properties
will be realized. An analysis model may be implemented by many different designs
with different optimization characteristics. While an analysis model presents a set of
possible solutions, a design is a particular solution to the problem. Design is always
an optimization of an analysis model. The design process is basically:

* Identify the design (optimization) criteria
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* Rank the design criteria in order of criticality

* Identify design patterns or other solutions that optimize the more important of

the design criteria at the expense of those of lesser importance.

Many of the design criteria are the quality of service constraints from the analysis.
There may be others as well, such as reliability and safety level, reusability, maintain-

ability, simplicity, time to market, and so on.

In the Harmony process, we do this at three levels of abstraction. The architectural
level of abstraction optimizes the system at an overall gross level. As we will see, there
are five (sometimes six) views of the architecture that are optimized more-or-less
independently. The mechanistic level of abstraction focuses on collaboration-wide
optimizations, where a collaboration realizes a single use case. The scope of concern
here is an order of magnitude smaller than architectural scope. Lastly, the detailed
design is at the level of the individual class or object. At this level, individual objects
are optimized and focus is centered on the 5% (or so) of the objects that have special
optimization concerns.

Architectural Design Phase

As mentioned earlier, the Harmony process recognizes five (or six) important views
of architecture:

e Subsystem and Component View
e Concurrency and Resource View
* Distribution View

* Safety and Reliability View

* Deployment View

* (optional) Security View

In the Architecture Design phase of the spiral, one or more of these views is
elaborated, depending on the needs of the current prototype. This is done primarily
via the application of architectural design patterns (see the author’s Real-Time Design
Patterns' for an in-depth presentation of patterns in each of these architectural
views). These patterns are large in scope, affecting most or all of the system.

Architectural design representation uses the same UML diagrams as in systems

architecture and object analysis—class diagrams to represent the structure and

1 Douglass, Bruce Powel, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems,

Addison-Wesley, 2002.
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sequence diagrams to represent collaborative behavior, state machines to model the
behavior of individual elements, and sequence diagrams to represent the collabora-
tion of groups of such elements.

The subsystem and component view identifies the large scale architectural pieces
of the system, their responsibilities, and their interfaces among each other and to
the external actors. The concurrency and resource view identifies the concurrency
units (modeled as «active» objects), the policies for scheduling those concurrent units
and how they synchronize and share resources. The distribution view identifies how
objects are distributed across multiple address spaces, how they find each other, and
the means and protocols they use to interact and collaborate. The deployment view
shows how the products from the different engineering disciplines work together.
While the UML provides deployment diagrams, the SysML prefers to use class
diagrams to represent the deployment architecture because they are richer and more
expressive than deployment diagrams. Lastly, the security architecture is important
in some systems and has to do with the policies and procedures to maintain data
integrity and security.

Figure 2.13 shows the workflow for architectural design. You can see in the figure
how the design criteria are identified and ranked and then used to select appropriate
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architectural design patterns. The parallel nature of the applications of the patterns
in the different aspects of architecture emphasizes that 1) the order in which they
are introduced is a personal preference and 2) not all the aspects of architecture
must be realized in the same prototype. It is common to put off some aspects of the
architecture until later prototypes when they are low risk and concentrate on the
high-risk aspects in earlier prototypes.

Mechanistic Design Phase

The mechanistic design phase is concerned with the optimization of individual
collaborations, each realizing a single use case. The scope of mechanistic design deci-
sions is generally an order of magnitude smaller than those found in architectural
design, since a system typically consists of one to several dozen use cases. Similar
to architectural design, mechanistic design largely proceeds via the application of
design patterns, although the scope of the patterns is much smaller than that found
in architectural design. This is where the classic “Gang of Four” patterns'! and other,
more fine-grained patterns are applied.

The mechanistic design view is an elaboration of the object analysis view and uses
the same graphical representation—class and sequence diagrams for collaborations
structure and sequence, activity, and statechart diagrams for behavior.

The workflow for mechanistic design is shown in Figure 2.14. The flow is similar
to architectural design in that the first step is to identify what you want to optimize
(the design criteria), how important each of the criteria is, and then to find design
patterns that optimize the more important of these at the expense of the least. The
resulting design collaboration is tested, not only to make sure that you haven’t broken
the functionality in the original analysis collaboration, but also to ensure that you
have achieved the desired optimization.

Detailed Design Phase

The detailed design phase elaborates the internals of objects and classes, and has a
highly limited scope—the individual object or class. Most of the optimization in
detailed design focuses on the issues of:

* Data structuring (space or time optimization)

* Algorithmic decomposition

""" Gamma, et. al, Design Patterns: Elements of Reusable Object Oriented Architecture, Addison-Wesley,
1995.
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* Optimization of an object’s state machine
*  Object implementation strategies

* Association implementation

* Visibility and encapsulation concerns

* Ensuring compliance at run-time with preconditional and postconditional invari-
ants (such as ranges on method parameters)

There are many rules of thumb, guidelines and practices for detailed design,
although these commonly fall under the title of “idioms” rather than “patterns.” For
most objects, detailed design is little more than a trivial detail, but there is usually
a small (5% is typical), but important, set of objects that require special attention
during detailed design. Figure 2.15 shows the detailed design workflow.
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Implementation

The implementation phase is concerned with the correct construction of the properly
working architectural elements. This phase includes the generation of code (whether
it is automatically generated from your model, written by hand, or a combination of
the two), unit level testing of that source code and the associated model elements,
integration with legacy source code, the linking together of the pieces of the archi-
tectural element (including, possibly, legacy components), and model-based peer
review of the architectural element itself. It should be noted (since the question comes
up all the time), that it is not a problem to integrate existing legacy code during the
implementation phase. It is, in fact, unusual when this is not the case.

The primary artifacts for the implementation phase are:

Source code generated from the model elements

Compiled and tested software components

Unit test plan, procedures and results (textual documents)

Inspection report for the source code (textual document)

The straightforward workflow is shown in Figure 2.16.
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The test phase constructs the prototype from the architectural elements and ensures
that they fit together (integration), and that the prototype as a black box meets its
mission statement (validation). The first of these, integration, is concerned with the
construction of an integrated architecture from the architectural pieces constructed
in the previous phase. The tests are limited to demonstrating that the interfaces of
the architectural elements are used properly and none of the constraints are violated.
This normally proceeds in a stepwise fashion, according to an integration plan, that
adds the architectural elements one at a time. It is in this phase that hardware ele-
ments are formally integrated with the software elements for prototypes that have
hardware-software integration as part of their mission. The integration test plan
and procedures may be developed once the subsystem and component architecture
of the prototype is specified—that is, either at the end of systems engineering or
architectural design. Figure 2.17 shows the integration workflow that is done at
the end of each spiral to bring together the architectural elements produced in that
build of the system.

The validation phase tests the assembled prototype against its mission. The
mission for a prototype is normally a small set of use cases and/or the reduction of
a small number of risks. The validation test plan and procedures may be written as
soon as the requirements for the prototype are understood—that is, at the end of
the microcycle’s prototype definition workflow.

If defects are found during testing, they may be either fixed then (required if the
defect is severe enough) or may be deferred until the next prototype.
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The primary artifacts for the test phase are:
* Integration test plan, procedures, and results
* Validation test plan, procedures, and results
* Tested, executable prototype
* Defect report

It should be noted that the Functional and QoS test vectors are primarily
composed of the use-case sequence diagrams specified in the Analysis phase (Har-
mony-SW) or the System engineering phase (General Harmony). The regression
test vectors are a subset of the test vectors from previous microcycles. Additional
tests, such as stress, volume, coverage, and fault-seeding tests, are added manually.
The validation workflow is shown in Figure 2.18.
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Summary

This chapter briefly described the Harmony process, in both the general form (that
contains a systems engineering phase) and software-only form. The Harmony pro-
cess consists of a set of integrated workflows for each phase in the process. In the
general form, the development spiral is preceded by a systems-engineering phase
that fully elaborates all the requirements of the system and constructs a well-formed
and executable use-case model. Then an internal subsystem architecture is created
and the requirements, represented primarily as “operational contracts,” are allocated
to these subsystems, usually being grouped together into subsystem-level use cases.
The subsystems themselves are decomposed into high-level engineering discipline-
specific components for electronic, mechanical, chemical, and software aspects
and the logical interfaces among these components are defined. At this point, the
models are handed off to the subsystem teams and their engineering disciplines for
further development.

In the Harmony-SW variant, some optimizations are enabled by the lack of sig-
nificant hw—sw codevelopment. Rather than fully specify all requirements up front
in Harmony-SW, use cases are identified but not detailed until they are about to be
developed. With the development spiral, a small set of use cases are selected and, at
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that time, are detailed with sequence diagrams, state machines, activity diagrams,
etc. Then an object analysis model is created that correctly captures the functional
requirements of the use case and this model is validated via model execution.

This analysis model requires optimization and the introduction of specific
realization technologies, which is done in design. Design is driven by the optimi-
zation criteria such as the quality of service requirements. Design occurs at three
levels of abstraction: architectural design optimizes the system at an overall level,
mechanistic design optimizes collaborations of objects, and detailed design optimizes
individual objects.

Implementation produces high-quality architectural units (e.g., subsystems or
components) that are unit-tested and peer reviewed. These components incorpo-
rate legacy code and components as appropriate. Integration brings together these
high-quality components and integrates them—along with relevant hardware ele-
ments—into an integrated prototype. Validation demonstrates the correctness of
the prototype against its mission (requirements and risks to be reduced). Identified
defects are then either fixed in the testing phase of the current spiral (for critical

defects) or at some appropriate point in the subsequent spiral.

The next spiral continues where this one left off, adding in (and detailing, in
the Harmony-SW variant) the next few use cases and risk mitigation items. The
incremental prototype becomes increasingly more capable and complete as time
goes on, until finally all the requirements have been realized and validated. At this
point, the prototype is released to manufacturing or the customer.

In the next several chapters, we will introduce problems and exercises for you to
gain experience in applying these workflows to real-life applications. Two applica-
tions are presented. Appendix A provides a problem statement for a traffic-light
control system. This is a small-scale application and demonstrates how the process
workflows apply to systems of moderate size. Appendix B presents a much larger-scale
system—an unmanned air vehicle—complete with ground and airborne aspects.
This larger system allows the exploration of problems of scale and architecture that
don’t arise in small systems.

In both cases, the purpose of the problems is to give you a context in which
to gain experience by doing. It is not to construct a fully complete and validated
model of those systems. This is especially true of the unmanned air vehicle system.
To create and explain a full UAV system would take thousands of pages. However,
the scope of the problems provides rich fodder for using model-based approaches
to development.



Specifying Requirements

What you will learn:

+ How to identify types of requirements

+ How to group requirements together

+ How to identify use cases

+ How to capture and represent quality of service requirements

+ How to identify operational scenarios

* How to use state machines for representing requirements

+ How to capture complex requirements

* How to capture algorithmic requirements with activity diagrams

- How to validate requirements models

One of the most important things that engineers must do is specify requirements
on systems. This is a crucial step in any high-reliability process but, unfortunately,
is often poorly executed. Few engineers have been trained in the capture and
management of requirements, and this lack results in huge “Victorian novel” style
requirements documents being constructed, which are incomplete, inconsistent and
ambiguous. Because such documents are captured in text, they inherently lack the
precision necessary for validating them prior to initiating design. This means that
the quality of the requirements cannot be assessed in any reliable way. Requirements
defects are one of the most important kinds of strategic flaws in systems and are
certainly the most expensive to repair because they are introduced early, (typically)
identified late, and have far-reaching implication and scope. The UML and the

Harmony process offer a better way.
65
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The UML only implicitly represents requirements, but does explicitly represent
coherent requirements sets via the concept of use cases. A use case can be thought
of as an operational view of the system clustered around some generic kind of sys-
tem usage. As such, it implicitly “contains” a coherent set of requirements clustered
around that system usage. More specific uses of the system—called scenarios—are
highly specific “paths” through the use case. From the DODAF and MODAF
point of view, use cases and scenarios can be part of the “operational architecture”
of a set of interacting operational nodes. In operational perspective, the use cases
and scenario views are vital to understanding how the operational nodes (that will
be met by actual systems') collaborate with other elements in the context of the
system environment.

We can also model the requirements from the specification, rather than the
operational, perspective. These are statements of static and dynamic properties of
the system—the “system architecture” in DODAF/MODAF terms. When we look
at requirements from this perspective, precise, unambiguous statements of system
properties and aspects must be made. Formal languages within the UML, such as

statecharts and activity diagrams, are tailor-made for such precise specifications.

The question arises as to how to best represent requirements from the operational
and specification perspective. If you didnt know how to do this in a language as
commonplace as English, how much more daunting it must be to do it with a less

common language, such as the UML!

This chapter provides a set of exercises that will give you practice and experi-
ence representing requirements, from both the operational and specification point
of view. The answers to the exercises are given in Chapter 8. Be aware that there is
no one “right” answer—there are many good ways to model requirements so that
they are clear, complete, consistent, and unambiguous. There are many more bad
ways to model requirements but, nevertheless, there are many good ways, so if your
answers differ from those in the answers section of the book, it doesn’t mean that
your answers are necessarily wrong. In my experience, however, use cases are the
most misused element in the entire UML. I believe this is not because use cases are
inherently difficult to understand, but because few engineers are trained in capturing
requirements. Most engineers end up trying to do what they are trained in—that is,

design—with use cases, rather than capture requirements in a design-free way.

' An operational node can be thought of as a role in the operational architecture, such as “Recon Plat-

form,” which, when the mission is actually run, is realized by a physical system such as “Satellite” or

“AWACS.”
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Note: Remember—all the problems in this book are based on two example
problem statements; both are given in appendices of this book. Appendix A
details the requirements for the Roadrunner Traffic Light Control System
while Appendix B details the requirements for the Coyote Unmanned Air
Vehicle (CUAV). The solutions for these problems can be found in Chapter 8.

Problem 3.1 Identifying Kinds of Requirements for
Roadrunner Traffic Light Control System

The UML does not have an explicit concept called a “requirement.” Even though
use cases, sequence diagrams, state machines, activity diagrams, and constraints of
various kinds are used to model the properties of requirements, the requirement
concept itself is lacking. For this reason, the Systems Modeling Language has added
one, and Rhapsody lets us add requirements into the models.

A useful way to think about requirements in the UML is that they are model
elements that specify some aspect of a system from an external, rather than internal,
view of that system. Note that requirements are not classes, even though they both
exist only at design time, because classes instantiate to objects, but requirements do
not. A requirement is a kind of “correctness” constraint that applies to a system.

I believe that there are many different kinds of requirements, as shown in Figure
3.1. An operational requirement is one that specifies how the system is to collaborate
with other elements (actors) in its environment. For example, if an unmanned air
vehicle (UAV) must interact with a set of GPS satellites to navigate its terrain, how
that interaction occurs is an operational aspect of that system. Functional require-
ments have to do with the behavior of the system. If a UAV must be able to point a
gimbaled optical sensor at a point on the ground, then it is a function the UAV must
be able to do. If functional requirement is a verb, then a quality of service requirement
is an adverb since it specifies “how much.” A quality of service requirement might
be that our gimbaled optical sensor will be able to adjust in 0.1-degree increments
with an accuracy of 0.01 degrees. A parametric requirement is both nonoperational
and nonfunctional. Suppose that the UAV must be constructed so that it weighs less
that 2100 pounds. The UAV’s weight is a property of the system, which might be
considered either static or dynamic, as the situation warrants. But it is clearly neither
a behavioral nor an operational aspect, yet it is important to represent. Finally, a
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design requirement has to do with the characteristic of the design per se but not of
the system as it exists in the field. An example design requirement might be that
the UAV is designed so that the next UAV can reuse at least 70% of the model, or
that the recurring cost of the system is less than $1.2M (not unreasonable at all for
our Coyote UAV).

Requirement

Operational
Requirement

Functional
Requirement

Design
Requirement

Quality of
Service

Parametric
Requirement

Requirement

Figure 3.1 Requirement types

We model these requirements in somewhat different ways. For example, modeling
reliable communications is very straightforward with a statechart, but how would
you use a statechart to represent the fact that the nose of the UAV should be dark
grey in color?

For this exercise, create a new model and add two diagrams (either a use-case
diagram or object-model diagram will do). Label one “Overview Requirements”
and the other “Special Mode Requirements.” Take the text in the Roadrunner Traf-
fic Light Controller problem statement in Appendix A, up to the “Configuration
Parameters” section and put each requirement statement in a separate requirements
element. Link the requirements elements together with dependencies as appropriate,

using the following stereotype dependencies:
* «include» When a “whole” requirement includes a smaller “part” requirement

* «extends» When a smaller requirement specializes or adds to a main

requirement
* «derive» When a requirement is a more detailed restatement of another

* «explain» When a comment explains a requirement.
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Problem 3.2 Identifying Use Cases for the Roadrunner
Traffic Light Control System

Use cases are functional uses of a system from an external operational standpoint.

Remember, to be a use case, the following conditions must be true:

* It returns a value to at least one actor
* It contains at least three scenarios, each scenario consisting of multiple actor-
system messages
e It logically contains many operational, function, or quality of service
requirements
* It does not reveal or imply anything about internal structure of the system
* It is independent of other use cases and may (or may not) be concurrent with
them
e There should be no fewer than three and no more than three dozen use cases at
the “high level”
— “Large” use cases may be decomposed with «includes» and «extends» relations
into smaller use cases
—  Use cases may be specialized with the generalization (“is-a-specialized-kind-
of”) relation

Use cases may be identified in many different ways. Some analysts prefer to iden-
tify operational scenarios and then group them together into sets related by common
system usage. Some analysts prefer to identify separate system uses and then detail
them with many scenarios. Still others prefer to identify the actors that interact with
the system and concentrate on how each actor collaborates with the system.

Select one of these strategies and identify the use cases for the Roadrunner Traffic
Light control system. Also identify the actors in the system context and draw the
use-case diagram for the system. Once completed, apply the criteria provided above

to make sure you've made a good selection of use cases.

Problem 3.3 Mapping Requirements to Use Cases

The UML itself does not provide the notion of a requirement per se, so we are free
to add dependencies that we might need to relate these model elements. In addition
to the stereotypes of dependencies between requirements, I also use the «specifies»
dependency to show that a use case is partially specified by a requirement element.
I draw this dependency from the use case to the requirement element.
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Take one of the use cases identified in the previous problem and create a new use-case
diagram for it. On this diagram use the dependency relations to relate the operational
requirements related to that use case as a way of defining that use case. You may also
add additional relations among the requirements themselves, as appropriate.

Problem 3.4 Identifying Use Cases for the
Coyote UAV System

I've seen customer models that have a flat organization of 500 or more use cases.
These models are practically impossible to use. Remember one of the previous rules
of good use cases: There should be no fewer than three and no more than three dozen
use cases at the “high level.”When the system is highly complex, it becomes necessary
to create taxonomies of use cases at different levels of abstraction. The bottom, or
leaf, level use cases are still entirely necessary but the taxonomy allows us to view the
requirements organization hierarchically as well as horizontally. In practice, I have

found this a crucial aspect of useful use-case models for complex systems.

For this exercise, identify the use cases for the Coyote UAV system (see Appendix
B). Because of the complexity of the system, it will be necessary to identify “high-
level” use cases that are decomposed into more detailed use cases. Use the «include»
stereotype of dependency to create a whole-part taxonomy of use cases at different
levels of abstraction. Add a package to hold nonoperational requirements such as
system weight and payload capacity. Stereotype this package with the «parametrics»
stereotype on the package as a way to indicate that this will be a placeholder for
system parametric requirements. Validate the use-case model against the guidelines
given in Problem 3.2.

Problem 3.5 Identifying Parametric Requirements

For the Coyote UAV, identify the system parametric requirements. Remember that
these are requirements that specify nonoperational aspects of the system, such as
physical characteristics. Add these elements to the package created for this purpose
in the previous exercise. Create a use-case diagram that shows this package contain-
ing the requirements elements.
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Problem 3.6 Capturing Quality of Service Requirements
in Use Cases

Use cases are coherent sets of functional requirements. Good use cases are named with
strong verbs.? If use cases, and their contained requirements, are verbs, then quality
of service (QoS) requirements are adverbs; that is, they modify the use case or the
specific requirements within those use cases. They specify “how much,” “how fast,”
and “to what degree.” Such requirements are historically known as nonfunctional
requirements, but these days they are more commonly known as QoS requirements.
How are QoS requirements represented?

QoS requirements are themselves requirements and can be related to use cases or
requirements. [ use the «qualifies» stereotype on dependency to represent the relation
between an element and a QoS requirement. This problem is for you to take a “Fly
UAV” use case and, in a separate use-case diagram, add the QoS requirements that
modify this use case and attach them with dependencies.’

Note that while Rhapsody provides its own requirements element (from SysML),
it is quite common to use constraints to represent requirements elements. Such
constraints (or requirements elements) can be shown on use-case diagrams or in the
more detailed view of sequence, timing, and state diagrams, topics to be discussed
later in this chapter.

Problem 3.7 Operational View: Identifying
Traffic Light Scenarios

So far, we've been focused on requirements specification and identifying the use cases
to which they belong. This is little more than a modernization of the traditional
requirements approaches. This can be useful, but large numbers of requirements are
still problematic—they are difficult to understand, ambiguous, and almost impossible
to validate. Is it possible to use the modeling power of the UML to help us?

As a naming convention, use cases should be named with strong verbs, although sometimes for
highly reactive (stateful) systems, you'll see use cases named with the word “... mode” in the title.

A common question I hear is whether a separate package should be created for all QoS require-
ments. In my mind the answer is “Clearly not.” If a QoS requirement applies to a use case or a
requirement within a use case, then that adverb should be positioned next to the verb it is modify-
ing—that is, it should be placed into the same package as the use case. If it is a parametric require-
ment, then it should be placed in the package with the parametric requirement it qualifies.
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The answer is a resounding YES (although T'll bet you could guess I'd say
that ;-)). We call this “detailing the use case.” First, we'll discuss the notion of sce-
narios as a means of looking at the operational requirements in a use case. In later
problems we’ll examine the use of formal languages (state machines and activity
diagrams) for specification.

A scenario can be thought of as a specific sequence of inputs and outputs that
represents a single path through a use case. A use case normally has many different
scenarios—several dozen is not uncommon—that show combinations of different
inputs and different sequences. Scenarios are useful because they relate the system
capabilities with the expectations of how the system will interact with other elements
in its environment (i.e., actors). Further, while domain experts will understand the
flow of scenarios and be able to discern reasonable from unreasonable scenarios, they
are normally at a loss when confronted with formal languages. Lastly, scenarios are
valuable at every level of abstraction. At the System level, there is a single lifeline
for the system (or the system use case)—all other lifelines are actors. At the sub-
system level, the system lifeline is “opened up” and the internal parts (subsystems)
can be used as lifelines as well. At the collaboration level, the subsystem lifelines are
decomposed into their primitive (nondecomposable) object roles that collaborate
to fulfill the detailed functionality required.

The most common representation for scenarios, by far, is sequence diagrams. How-
ever, timing diagrams and communication diagrams (formerly known as collaboration
diagrams) are sometimes used, although usually for design-level scenarios only.

A common problem with the application of scenarios is that there are so many
possible scenarios that people get bogged down, particularly with the so-called “rainy
day” scenarios. These are scenarios where faults occur and the system must handle
them in some fashion. My recommendation is to define the sunny-day “everything
goes right” scenarios first, and then create the rainy-day scenarios.

How many scenarios? A minimal spanning scenario set for a use case has every
operational and operational QoS requirements contained within that use case
represented at least once. For faults, it is usually necessary to classify them into
equivalence classes. An equivalence class represents a set of faults that are identified
and handled using the same means. In an anesthesia machine, a fault created when
the endotracheal tube dislodges from the patient’s throat is in the same equivalence
class as if the oxygen supply line disengages from the wall supply or if the oxygen
supply fails. In all these cases, the fault is detected in the same way (e.g., lack of
end-tidal pressure wave) and the action is the same (same alarm to the attending

physician). Thus, it is only necessary to have a single scenario for “failed to inflate
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patient’s lungs.” I recommend that all of the specific faults that can give rise to the
generic fault be listed in a constraint, but I don't believe it necessary or useful to
show the same scenario many times, once with each possible specific fault.

For this problem, take a use case identified for the traffic-light system and create
three different scenarios. Take care when identifying the actors—they should be
objects outside the scope of the system that have significant interactions with the
system during the execution of the use case. Also, the preconditions for each scenario
must be explicitly specified. I like to put these in a note or constraint at the top of
the scenario.

Problem 3.8 Operational View: CUAVS Optical
Surveillance Scenarios

The Coyote UAV system is much larger in size and scope than the Roadrunner
TLCS. Consequently, there are more use cases as well as a deeper layering of them.
However, the same technique of expressing the operational aspects of the system
can be used. It is, however, even more important to organize and target the sce-
narios better because there will be so many use cases, each of which will have many
scenarios. This problem is to take the use case Perform Optical Surveillance and
create three scenarios: in the first scenario, the payload operator moves the gimbaled
video camera around with a joystick to examine the area over which the Coyote is
flying. In the second scenario, the payload operator should locate a target visually,
select the target in the visual field, and then command the camera to follow that
target autonomously as the UAV flies in the area. In the third scenario, the payload
operator manually scans the area and, upon finding a potential target, zooms in 3x
on the target and then manually scans the surrounding area.

Problem 3.9 Specification View: Use-Case Description

Text is a very useful medium for capturing requirements—it is both expressive and
readable. However, it lacks precision and is ambiguous and so is problematic if it is
the only representation for requirements. In previous examples, we've used require-
ments elements to organize requirements into taxonomies. It is useful, however, to
also provide a “structured text” description of the use case itself. This is normally
done in the use-case description field in tools such as Rhapsody. The format I like
to use for this is as follows:
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Name: name of the user case
Owner: person or team in charge of developing the use case

Purpose: the user-purpose of the use case (what value it brings, what purpose it

serves)

Requirements (optional): list of requirements (optional if requirements diagrams

are used)

Data (optional): Data values inherently consumed, manipulated, or generated
by this use case—need not be shown especially if information flows are

specified
Preconditions: what must be true before the use case runs

Postconditions: what the system guarantees to be true when the use case

completes
Reference documents: hyperlinks to relevant standards or specifications

Different authors suggest different formats to this standard use-case header.
Some, for example, will include lists of actors or constraints. My recommendation
is not to replicate information already present (or to-be-captured) graphically, so I

don’t describe the actors nor list the primary scenarios here.

This problem is to use this (or whatever standard format you prefer) to describe
one use case for the Roadrunner traffic light control system (“Detect Vehicle”) and
one use case for the Coyote UAV.

Specification View: State Machines for
Requirements Capture

Many systems exhibit “reactive behavior”; that is, the system waits for events of
interest and them reacts to them by executing some set of actions, changing state,
and then waiting for the next event. This kind of behavior is precisely what state
machines excel at specifying. We will use such state machines to specify the require-
ments of reactive systems. We may (and most likely will) use state machines later
in the design and implementation of the very same systems, but in this section we
are entirely concerned with the appropriate specification of requirements and not

the design or implementation.

Some engineers are surprised at this use of state machines in requirements
specifications, but state machines have been used to help specify requirements

of complex reactive systems for more than 30 years. Statemate™ from Telelogic
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(formerly I-Logix) is one example tool that was originally developed for military
aerospace system requirements specification in the mid-1980s. It is still in common
use in such environments. In Statemate, functional decomposition is applied to the
system, and these functions are defined using a combination of statecharts, truth
tables, and action statements. Statemate is used primarily by systems engineers for
the specification of requirements, not by software or hardware engineers designing
those same systems. UML can also model such specifications, and is used in many

environments to help capture requirements in a clear and unambiguous way.

State machines have plenty of advantages over the use of text for requirements
specifications. While text is very flexible and allows for subtle nuance, state machines
are precise and unambiguous. It is because of this precision and lack of ambiguity
that state machines are so powerful in requirements specifications. In addition,
state machines are executable, a characteristic that is invaluable in determining
the consistency, correctness, and accuracy of complex sets of requirements. State
machines are testable, which allows requirements to be validated before the system
is actually designed. Furthermore, tests can be automatically generated from such
formal requirements and be applied to the completed system later. Text remains use-
ful—there is no convenient or obvious way to explain “Why?” with state machines
alone—but state machines are even more useful than text for the specification of

requirements.

Because use cases group requirements into coherent clumps, state machines will be
applied a use case at a time. When the system, while executing a use case, primarily
waits for incoming events and then responds to them, a state machine specification
for the use case is appropriate. These events may be synchronous, asynchronous or
time-based, but whenever the system waits for a set of events and executes actions
in response, a state machine can easily specify the required behavior of the use
case. For use cases that simply run until they are done—that is, they execute algo-
rithms—activity diagrams are usually more appropriate. In the next section, we will
see how activity diagrams can also be used to specify behavior.

When modeling a use-case state machine, there are some simple guidelines to

follow:

¢ Incoming messages or commands become events (possibly with data attached as
g & y

parameters) in the state machine
*  Outgoing messages or commands become actions in the state machine

* Underlying technology and design should not be expressed in this state machine
because the purpose of a use-case state machine is to specify the required behavior,
not the internal design
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*  Scenarios for the use case are nothing more (or less) than sets of transition “paths”
through the state machine

—  Every scenario for the use case should represent transition paths of the use-

case state machine

— For minimal coverage, every transition should be represented in at least one

scenario

— As mentioned before, use-case scenarios form the basis for the validation test
suite of the final system product

Scenarios are a very useful, operational view of the system behavior. However,
scenarios are only “partially constructive,” meaning that they only tell part of the story.
A (usually large) set of scenarios is required to show the complete behavior of the use
case. A state machine, on the other hand, is “fully constructive” and specifies all of
the behavior for the use case in one place. If necessary, these state machines can be
decomposed in the standard ways, but whether a nested state is shown on one diagram
or decomposed on another, it is still logically a singular view of the behavior.

Problem 3.10 Specification View: Capturing
Complex Requirements

Statecharts are a great way to formally capture a behavioral specification for a system
executing a use case. In the problem, you must create two statecharts. The first is
for the “Evening Low Volume Mode” use case. Be sure to capture the behavioral
requirements—the primary road should flash yellow, and the secondary road should
flash red. Flashing should occur at 0.5 Hz, with an ON duty cycle of 75%. Also
add an initial delay when entering the mode so that any traffic in the intersection

has time to clear before engaging in the flashing control.

The second statechart is more complex. You are to create a statechart for fixed
cycle time mode. I recommend you do this in three steps.* First capture the behavior
ignoring turn lanes and pedestrians. Once you get that part correct, then add turn
lanes. Remember that there are two different turn-lane modes, one in which the turn
lanes complete before any straight traffic can go (SIM, or “simultaneous” mode) and
another where the turn lane is green along with the straight traffic going in the same
direction (SEQ, or “sequential” mode). A complicating factor is that you must be

able to detect when a turn lane detection event has occurred and remember it until it

*  Breaking down a problem into small chunks and validating each chunk through execution is part of

the “nanocycle” of the Harmony (formerly known as ROPES) process. This approach greatly simpli-
fies the task of getting the end-product working correctly.
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is time to deal with it—and then you can forget it. Use the Latch State Pattern from
[2]: create an and-state for each turn lane that has two states: NoTurnRequested, and
TurnRequested. When a turn vehicle request occurs for a given turn lane, transition
to the TurnRequested state. Once that request has been satisfied (the turn light turns
to Red, for example), transition back to the NoTurnRequested state.

Once turn lanes have been properly handled, add pedestrian lanes.

Hint: initially, don’t try to create an optimal statechart with a minimum number
of states. Once you have the behavior modeled correctly, you can then attempt op-
timization, if desired. Your goal here is to aim for correctness and simplicity, even
if there is redundancy in the state machine. This will not impact the design of the
system at all because at this point we are just specifying the requirements. Therefore,
if you're relatively new to statecharts, create two or-states, one for the SIM mode
of operation and another for the SEQ mode of operation. Then, in each, detail out
the behavior of the through traffic. Then add the management of the pedestrian
traffic using the Latch State Pattern.

Problem 3.11 Operational to Specification View:
Capturing Operational Contracts

In this last requirements analysis problem, we will take one of the Coyote UAV use
cases, Perform Optical Surveillance, and walk through the way the Harmony pro-
cess® captures requirements. This approach has proven quite useful with large-scale
development projects that include a separate systems engineering team (or at least,
a distinct system engineering effort), followed by an architectural specification and
finally by a decomposition into the various engineering disciplines of electronic, soft-
ware, mechanical, and even chemical design. In software-only projects, particularly
ones in which a high degree of agility is important, a simpler approach may be used.
However, in this example, we are going to assume that the systems engineering team
will be specifying the detailed requirements and systems-level architecture first, and
then, at the subsystem-level, decomposing the subsystems into electronics, software,
mechanical, and chemical parts, assigning specific requirements to each. Before we

get to the problem per se, let’s discuss Harmony’s requirement capture process.

The Harmony Requirements Capture Process

The overall Harmony process is shown in Figure 3.2. It is a kind of “V-Process” in

which requirements analysis and overall system architecture is specified up front,
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followed by a set of analysis-design-implementation-validation spirals (the latter will

be discussed in more detail in later chapters).
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Figure 3.2 The Harmony process overview

In this chapter on requirements analysis, we will naturally be focusing on the require-
ments capture and specification parts, in the systems engineering part of the overall

process. The workflow for the systems engineering parts is shown in Figure 3.3.
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For the CUAYV, we have already defined a set of system use cases. In this exercise
we will perform the black-box and white-box use-case analysis of one of these. In
the “black-box” step of system functional analysis, we will determine the opera-
tional contracts into which the system enters when performing the use case. The
operational contracts are defined to be the set of services—provided or required by
the system—that are used in the operational execution of the system in its environ-
ment. This will include the messages sent, the data associated with those messages,
and the pre- and post-conditions of the messages. In the next step, we will define
subsystems for the CUAV and, finally, in the “white-box” analysis, we will map these
operational contracts to the identified subsystems.

A Note on Notation

It is perfectly permissible to use a state machine to specify a use case, and that is what
we have done here. However, it is also useful to begin to specify interfaces and that
is something that cannot be shown directly on a use-case diagram. For this reason,
we will represent the use case with a class. As a class, I can add ports to the use
case and specify with precision the interfaces (including the services and data) that
define the contracts that the ports support. This will also be useful later when we
add internal structure to the collaboration of elements realizing that use case—we
can simply nest the object roles within the use-case class as parts. To show clearly
that the class is representing a use case, I will preface the name of the class with “uc.”
I will also represent actors as classes, because the UML lacks a notation to show
these as instances or to show the interfaces that they might require or provide—a
crucial consideration for systems engineering. Actor class names will be prefaced

with “a”. For example, Figure 3.4 is a standard use-case diagram that is represented

@

Qutsider

O

Insider

Figure 3.4 Use-case diagram (standard)
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using classes in Figure 3.5. The latter figure is more explicit than the former with
respect to connection points and interfaces.

1
aOutsider B ucUseCase 1

1] port 2

alnsider

port 1

port 0

Figure 3.5 Use-case diagram (class notation)

The Rhapsody tool provides the notion of a block, which is nothing more than
a singleton object with an implicit class type. Blocks can be converted to normal
objects easily, but many systems engineers do not wish to be distracted from their
task of capturing requirements with the detailed semantics of objects and classes. If
desired, an object or an object role can be used wherever we use the term “block.”

Coyote Flight Requirements To Operational Contracts

The basic approach for specifying operational contracts is shown below:

Table 3.1 Mode 2 parameters

Step Task Work Product Comment

1 | Define use-case model | Use-case diagram Ports are defined but

context Structure diagram per | “empty” at this stage
use case

2 | Identify system-level | “Black-box” sequence | Lifelines can be actors
operational contracts | diagrams; or use-case blocks
in the black-box use- | System-level opera-
case scenarios tional contracts

3 | Define use-case func- | Use-case black-box This task may run in
tional flow activity diagram parallel to #2
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Table 3.1 Mode 2 parameters (continued)

Step Task Work Product Comment
4 | Realize messages as Populated black-box | It is easiest not to
operations structure diagram populate the model
with the messages until
the sequence diagram
is “stable” and then
populate it with “auto
realize” feature
5 | Define interfaces;
Allocate messages to
interfaces
6 | Define system-level Use-case statechart Derived from black-
state behavior diagram (per use case) | box use-case scenarios
7 | Verify and validate Validated system-level
black-box use-case use-case model
model through model
execution

For the CUAV use case “Perform Optical Surveillance” we already have a few
scenarios. Note that messages from the actor will become operational contracts
defined on the ports while “messages to self”—called “reflexive messages™—will be
used to specify the functional decomposition of the required processing done in

response to the invocation of the operational contract.
Your job, in this exercise, is to:

1. Draw the block diagram representing the use case, the actor(s), and the interfaces
between them.

2. The messages that come from the actor(s) must be collected into provided inter-
faces on the appropriate port of the use-case block and required interfaces on
the actor. Messages sent to the actor(s) must be collected into required interfaces
on the use-case block and provided interfaces on the actor port. Messages to the
use-case block should have public visibility while reflexive messages should be
protected or private.

3. For each service (operation) the system provides, specify pre- and post-conditions
and the types and ranges of parameters, if necessary.
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4. Construct a use-case activity diagram representing all of the scenarios previously
specified for the use case.

5. Define a state machine for the use-case block that is consistent with the set of

scenarios.

Arguably, the last item in the list will be the most challenging.
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Systems Architecture

What you will learn:

- Essential properties of systems architecture
+ Organizing systems models

+ Identifying systems architecture

- Specifying subsystem interfaces

*  Mapping requirements to subsystems

Overview

This chapter is specifically for projects that contain a systems aspect—that is, systems
that will ultimately be realized using more than a single engineering discipline. It is
common, for example, for systems to contain software, electronic, mechanical, and
even chemical parts. The systems architecture identifies requirements of the system
as a whole and the architecture of the system constructed of subsystems that are
themselves to be implemented with some combination of engineering disciplines. In
the previous chapter we discussed capturing of systems requirements. In this chapter

we will focus on the specification of a systems-level architecture.

Many projects are primarily software-oriented and don’t require effort defining
the systems architecture, although significant effort should be spent in specifying the
software architecture (the subject of Chapter 6). However, even for software-only
projects, this chapter may be highly useful as it introduces the important aspects of
architecture and focuses on one of these—the identification of subsystems, with the
concomitant facets of decomposition of system use cases into subsystem use cases,

and the specification of interfaces and interactions among the subsystems.

83



84 Chapter 4

Let us review what we mean by the term architecture. Architecture encom-
passes the large-scale design decisions that affect most or all of the system. Note
that architecture is a part of design. In the Harmony process, analysis is all about
capturing the essential aspects of the system—the properties and characteristics of
the system that are essential for correctness. Design, on the other hand, focuses on
optimization of the analysis model against what are collectively termed the design
criteria—the set of aspects of the system against which different designs and tech-
nological choices are measured, evaluated, and, ultimately, selected. Design criteria
may refer to system performance (such as worst-case execution time, bandwidth,
or throughput), run-time usage of system resources (such as memory), design-time
“goodness” metrics (such as complexity or encapsulation), design properties (such
as maintainability, reusability, or portability) or even project properties (such as
work effort required).

The Harmony process identifies three levels of design. Architectural design
attempts to optimize the entire system scope at a gross level with a coherent set of
architectural choices. Mechanistic design seeks to optimize a collaboration of objects
working together to realize a system-level capability (e.g., a single use case). Detailed
design optimizes individual objects. We'll focus on just architecture here since that
is the perspective of system engineering.

The Harmony process identifies five key aspects of architecture, highlighted in
Figure 4.1.

Subsystem and

Component View

Figure 4.1 Aspects of architecture
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The concurrency and resource view of the architecture identifies the concurrency
aspects of the system and how resources are shared among those concurrent units.
The distribution view specifies how the objects will be distributed across multiple
address spaces (e.g., CPUs) and how they will communicate and collaborate effi-
ciently and reliably. The safety and reliability view of the architecture concerns itself
with the identification, isolation, and correction of faults during system execution.
The deployment view identifies which aspects of the system shall be implemented in
the various engineering disciplines and how they will interact. Finally, the subsystem
and component architecture view concerns itself with the specification of the larg-
est scale pieces of the overall system, how the system functionality maps into those
structures, and how those elements interact in the large scale. It is this last aspect
of architecture that is the primary focus of system engineering, although the other
aspects may be considered as well.

What we mean by a system architecture is the identification of the strategic design
decisions that affect most or all of the system from the systems point of view. The
systems point of view is “above” software, electronic, or mechanical engineering.
Thus, the systems architecture will focus on the specification of the set of subsys-
tems into which the system will be decomposed, the allocation of requirements and
functionality to those subsystems, and the interfaces between those subsystems.
At the end of the systems architecture activities, portions of the systems model are
handed off to the subsystem teams, where each subsystem is then decomposed into
the engineering disciplines and more detailed analysis and design work begins.

To this end, the systems architectural definition will focus almost exclusively on
the subsystem and component view of the architecture, although it may have to
“drill down” into the other views from time to time.

Problem 4.1 Organizing the Systems Model

Organizing the model is something not usually considered until the team runs
into a problem managing the burgeoning complexity of a system under construc-
tion. Reorganizing a model at that time requires a nontrivial and (almost always)
unscheduled effort. Projects that have a systems team performing systems analysis
are usually complex enough to warrant some early consideration of how you would
like to manage the model.

There are many ways to organize models and, while we will focus on only one
here, there are viable alternatives. As with most things, though, there are many more

bad ways to organize models than good ones. Some points to consider include:
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* Large project or small?

*  One model or many?

* Single product or family of products?

*  How will common parts be shared among team members?

* How will the architectural aspects be made available to the team?
* How will the architectural decisions be enforced among the team?
*  Will the team be co-located or distributed?

* How will we minimize model management overhead?

e What principles will be used to group elements together?

* How will configuration management be used?

One of the first considerations is whether to have one large model shared among
the team or separate models. A single model has the advantage of simplicity of man-
agement—you only have one entity to manage (even if it has subparts). On the other
hand, a single model takes longer to load—a real concern if you have 50 or more
members on a team—and finding things to facilitate sharing and collaboration in
a large monolithic model can be difficult. Multiple models have the advantage that
system complexity can be divided across many different models and each model is
smaller, more manageable, and takes less time to load than a larger single model. On
the other hand, significant thought should be put into what the submodels should
be, what criteria should be used to locate model elements in the various models,
and how the models will be shared across multiple stakeholders.

As a recommendation, for teams of 15 or fewer members, a single model may be
a good choice; for teams of 20 or more, multiple collaborative models are probably
a better choice. Of course, the properties of the system under development impact
the decision. If the model is linearly separable (i.e., able to be broken into a number
of more-or-less independent pieces), management of multiple models is easy. If the
system is not linearly separable, it may be much more difficult to create multiple
models. If, in order to work on one model one must import all the other models as

well, breaking the system up into multiple models won't help you.

The primary reasons to break up large models are to 1) decrease load/save times
and 2) provide smaller but sufficient models to teams who have narrow focus. It is
this latter concern that we will address here. The typical stakeholders for the system
model are shown in Table 4.1.
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Table 4.1 Model stakeholders

Group Purpose Scope of Concern
Systems Construct a discipline- System requirements
engineers independent model System architecture

of requirements and
architecture

Map requirements and
functionality to subsystems
Specify interfaces between
subsystems

Subsystem team

Create a deployment
architecture for the specific
subsystem

Create software and
hardware specifications

(submodels)

Single subsystem
Mapping of subsystem
requirements to engineer-
ing disciplines

Engineers
(SW, mechani-
cal, electronic,
chemical)

Perform analysis and
design of a specific subsys-
tem within their discipline

Model elements within
their discipline for a single
subsystem

Design architect

Oversee architectural
design for the set of
subsystems

Common architectural
model for entire system
Discipline-related architec-
ture for each subsystem

Testers

Subsystem-level testing
Integration testing
Validation testing

Subsystem—normally
done within the subsystem
team
Integration—normally
done with system-level
scope
Validation—normally
done at system-level scope
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For small-scale systems, we recommend the following model organization:
* Systems area
— Systems requirements
»  Operational requirements (use cases)
= Non-operational requirements
m  System test vectors
—  Systems architecture (including deployment)
* System builds area (for incremental construction of the system)
— Build x (one per build)
* Common area (for shared types and classes)
* Collaboration x (one per system use case)

The above organizational scheme has the advantage of simplicity, but lacks
scalability to large team sizes and large problems. For moderate to large-scale systems,
in order to satisfy the needs of the various stakeholders, we recommend the follow-

ing, more elaborate organization:

* Systems area
—  Systems requirements
= Operational requirements (use cases)
e Use case x (for each use case)
— Black box
—  White box
= Nonoperational requirements
= System test vectors
—  Systems architecture
* System builds area (for incremental construction of the system)
— Build x (one per build)
e Common area (for shared elements)
—  Subsystem interfaces
— Shared domains
*  Subsystem area x (for each subsystem)
—  Subsystem requirements
= Subsystem operational requirements (use cases)
e Use case x (for each subsystem use case)
= Subsystem nonoperational requirements
m  Subsystem test vectors
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—  Subsystem architecture
= Subsystem deployment
» Interdisciplinary interfaces (e.g., sw-electronics, electronics-mechanics)

—  Collaboration x (one per subsystem use case)

This organization can be used for models of moderate to very large scale. For more
moderate-scale projects, the black box/white box use case packages can be omitted
and the set of use cases can be stored together in a single package. For small models,
a single requirements package that holds every requirements aspect (operational,
nonoperational, requirements elements, use cases, constraints, etc.) may be sufficient.
The organizational scheme can be used within a single model, but it also suggests
division points for multiple models. For large systems projects, we recommend the

following subject areas be broken out into separate models:
*  Systems model

e  Common area model

*  Subsystem models (one per subsystem)

In UML, the unit of model organization is the package. A package is a model
element that contains and provides a namespace for other model elements, some of
which may be (nested) packages themselves. Model organization can be shown in
either a package diagram (a class diagram whose purpose is to show the organization
of packages in a model or set of models') or in a browser (tree) view.

For this first problem,

1. Create a single model for the Roadrunner Traffic Control System organized as
above. Since this is a more moderate scale project, use a single package for all

the use cases.

2. Create a set of models for the Coyote UAV using the suggested large-scale orga-
nization discussed above. Since this is a large-scale model, use separate packages
for the system-level use cases, with nested black box/white box packages.

Note that we haven’t yet identified the subsystems or domains, so you can leave
the subsystem area of your model empty. We will elaborate this model organization
as we identify subsystems and domains later in this chapter.

1

A model is a kind of package.
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Problem 4.2 Subsystem Identification

At this point, we have selected an overall model organization (the “logical architec-
ture”) for the system. It may be in one model—as is the case with the Roadrunner
Traffic Light System—or it may be a set of interrelated models—as is the case for
the CUAV system. This means that we've identified the set of organizational units
that exist at design time to help us manage the complexity of the problem we have
set about to solve. We need to make a similar set of decisions about how we organize
the set of run-time elements as well. Packages, the elements used to organized the
models, only exist at design time. Packages are not instantiable elements and serve
only to organize the elements of the design.

To organize the elements that exist in the running system (e.g., the objects)
we must use instantiable elements, objects of some kind. In the UML, this means
instances of classes. The UML defines a couple of kinds of classes that are used for
large-scale run-time organization. Specifically, subsystems and components are used
for this purpose, but these are basically just structured classes. A structured class is
nothing more (or less) than a class that contains internal parts (that are themselves
specified by classes). A subsystem or component is basically a large-scale structured
class. There are a few technical differences, such as a component associated with
an artifact, but these differences are minor. An artifact, for our purposes here, is
the embodiment of the run-time entity, such as a .DLL, .EXE, or .LIB file that
manifests the object. A subsystem is just a kind of component. Really, it’s all just
about classes.

While the UML defines the elements class, system, component, and subsystem,
it really doesn’t mandate how they are used. The Harmony process recommends,

therefore, a particular set of guidelines that we have found effective:

* A system element is a class that encompasses the largest-scale thing in your
project.

* Asubsystem element is a class that is the first-level compositional unit of a system

element (that is, subsystems are parts of systems).

* A component is a software class that is the first-level compositional unit of a

subsystem.

* A task is a structured class, contained within a component, that is active (i.e.,
owns the root of a thread) and is the fundamental unit of concurrency in the
model.
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In practice, run-time systems are organized by large-scale objects, and these

instances are typed by classes. In very large-scale systems, your project might contain

multiple instances of each of these levels. In small systems, you might skip some

levels of organizational abstraction altogether.

So what makes up a good set of subsystems? How is functionality decomposed

into subsystems? How do subsystems interact? Over the years, I have developed a

set of guidelines that I have found useful for subsystem identification:

an

A subsystem should be loosely coupled with other subsystems

Subsystems should enforce encapsulation through the use of ports and contract-
driven subsystem design

A subsystem’s internal elements should be more tightly coupled than they are
with elements in other subsystems (and often dont use ports)

A subsystem should contain elements that contribute to a small number of
coherent functions

A subsystem should have a well-specified set of interfaces, consisting of

— Aset of services provided by the subsystem

— Aset of services required from other subsystems

—  Pre- and post conditions for each service

— Constraints and invariants for each service

A subsystem should use a common set of hardware to support its functionality

In a multiprocessor system, a subsystem normally operates entirely on a single
processor or names the coherent set of functionality operating on a tightly coupled
set of processors

If multiple design teams are to be employed, a subsystem should be designed by
a single team

Of course, these are guidelines and not strict rules—good design is still as much
art as it is an engineering discipline.

Ports are often used in the subsystem architecture. Ports are a design pattern that:

Allows the explicit delegation of services defined on the subsystem to internal
parts

Enforces encapsulation by not allowing outside clients to have direct knowledge

of the internal structure of the structured class

Explicitly specifies interface contracts
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* Introduces some level of extra complexity and has some small performance and

memory overhead that cannot always be optimized away

Because of the overhead of port usage, ports are not recommended for use
everywhere, but for subsystems and architectural objects, ports provide benefits that
usually outweigh their costs.

For this problem, using the guidelines above, identify the subsystem architecture
for both the Roadrunner Traffic Light System and the CUAV. This means to identify
the subsystem objects (or classes, if you prefer) and draw the subsystem architecture
using a structure diagram with the outermost class being the entire system, with
internal parts representing the subsystems. Add ports and connect the subsystems
together with links as you think appropriate. Understand that these ports and links

may change as we do further analysis and design.

The Roadrunner model contains a _System/SystemsArchitecture package.? Place
the subsystem classes, objects, and diagrams in this package. Note that the CUAV
may have multiple levels of subsystem (such as the air vehicle, the ground station,
and subsystems within those primary systems). Since the CUAV is spread over
multiple models, identify the subsystems in the Systems Engineering model in the
Architecture package.

Problem 4.3 Mapping Operational Contracts into
Subsystem Architecture

As we have seen, requirements are captured in a number of forms in model-based
development projects. One of the key forms is the scenario, a sequenced set of service
invocations during the collaboration of a system. A scenario is a path through a use
case, in which a particular set of services are executed in a particular sequence to get
a specific result. At the highest level (“black box”) of abstraction, the entire system
becomes a single lifeline on the sequence diagram. However, system-level things
do very little work in and of themselves; primarily they organize and orchestrate
the behavior of their internal parts to achieve the system’s operational goals. This
means that a measure of the “goodness” of the subsystem architecture is whether
they can collaborate together to achieve the operational goals of the entire system.
If they can do so in an efficient way, then the subsystem architecture is “good”; if

2 T tend to use the underscore in the _System package name to ensure that it comes first alphabeti-

cally, even though in later versions of Rhapsody this isn't strictly necessary.
Ys g psody y Y-
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they cannot, then it “needs improvement.” The set of services in a set of scenarios,
between two elements at the same level of abstraction, constitutes those elements’
“operational contract” and will be used to specify the interfaces on the ports between
those elements.

In this exercise, you will be given a use case for each of the two examples and
one or more scenarios. Your job will be to take the scenario—and the operational
contracts that it implies—and map it down to the subsystem level of abstraction
and demonstrate how the subsystems collaborate together to realize the required

use-case behavior.

Figure 4.2 shows the use cases for the Roadrunner Traffic Light Control System.
In this exercise we will select one use case and one or two scenarios and do the
subsystem elaboration (“white box”) view, identifying the roles that the subsystems

play in the execution of the scenarios.

B P g Configure System B
RoadRunner Traffic Light \\< >

System Use Cases. S

O Operalor = (-)
\ e
e f//
‘/\ S e /\\\
k. o e \
T~~~ _Pedestnan e Remate Monitor
Tee Managp Tratfic ~
( § seincludes> o o
S i etec -
e T T A Pedestian )
Vehlc!e/‘ //7‘7 ‘t{v{\ b
TR o =

./ Gale
“{ Inlersection
™ L Mode

> —
Evening Low Volume ™
( Mode )

Fixed Cycle
Time Mode

Priority Vehicle e e

:) / P!
! \lé ~" Adaptive Mode ™ R

/ Datect Emergency ™, (\_‘ /) /
Vehicle ) e 7
" B -
T This is the use case
under cument

consideration
Emgrgency Vehicle

Figure 4.2 Roadrunner use cases

The use case we will consider is “Responsive Cycle Mode.” Remember, in this
mode, the system senses and responds to vehicles and pedestrians by setting the
lights appropriately. In the next figure, Figure 4.3, we see how this use case plays

out in one particular case.

The next figure shows a different scenario for the same use case. Just to illustrate

a slightly different way to model, in the previous scenario (Figure 4.3) the system
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Figure 4.3 Roadrunner Responsive Cycle Mode scenario

use case is shown on the lifeline; in the next figure (Figure 4.4) the system object
is used. The difference is immaterial and which you use is a matter of personal
choice. If you use the use case as a lifeline, then it represents the system executing
that functionality; if you use the system object, then it still represents the system,
but in this scenario you're still focused on the functionality in that one use case.
Whichever you prefer, these two scenarios are illustrating different ways in which
the Responsive Cycle Mode use case can play out. In the former case, a vehicle
arrives on the secondary road, causing the traffic light controller to cycle through
the lights. In the latter case, a pedestrian signals that they would like to cross the
street, causing the traffic light controller to cycle through the lights to allow the

pedestrian to traverse the street.




Systems Architecture 95

«Systems
‘ Frimary PrimaryV-Venicle Roadrunner_TLCS ‘ SecondanyV-Venicle | [ SecondaryP-Pedestrian
Pedestian

7 [Red( 7

Z Z ¢ w7 %

Z %, | Demtwalkg 7 b/]

7 7 DoniWalk() | 77 »%

A % Z 7

User Case: Responsive Cycle Mode Z é Green() | Z ?

- 7

7 77 PedestianDetect() 77,

Scenariv 3. Pedestian Cross Traflic é ?j ‘ s ;/1
. . 7 7

Preconditions Z Z [ | tim(o000) Z %
Mode: Responsive Cycle Time é o %Z 7
Primary and secondary roads sel the z = Yellow() z =
same Z T Z Z
Road directions DUAL Z % 7 7
Tum lanes: TRUE Z 7z tm(5000) ? 7z
Tum lane mode: SIM 5/' ’/ / A
Pedestiian lights. TRUE Z Z Red) | % /
Green Time 30 % i & = //
Yellow Time 5 “ 7 7 “
Red Nalay Time 0 Z ? lm(2000) % %
Walk time 20 % ? L reent) 7 /
Wam Time 10 = = ;—,/4/ //4
Green Tum Time 20 % Z Wikl 5/ v
Green Yellow Tima Z 7z o Z %
Z Z tm(20000) Z %

Starting conditions: b4 Z “ “=
Primary ic Green 2 7 | FlashingDoniWalk() 77 =
Primary walklight is Dont Walk 7 Z 7 - /
7 Z 7 7

= 7z tm(10000) 7 Z

Z Z Z “

7 7 4 7 7

7 7 | DontWalk() 7 v

Z Z 7 7

Z z tm(5000) / o

= y | 7 Z

é Z Yellow() 7 7

7 7 e 7

z o % f

é é (m(5000) 7 /

7z % MRest Z 7

7 Z . 7

7 7 o 7 Z

7 7 maw 7 .

7 7 Greenf) / 7

“ 7 i 7 7

Figure 4.4 Roadrunner Scenario 2

So take these two scenarios and elaborate them to include the subsystems identi-
fied for the Roadrunner Traffic Light Control System, showing how the subsystems
collaborate to realize the required system-level behavior.

The second part of this exercise is to do the same thing for the CUAV. We want
to map the operational contracts identified in the Perform Area Search use case.
The use case, and its description, is shown in Figure 4.5. The CUAV is, of course,
a large-scale complex system. The Perform Area Search use case includes other use
cases as summarized in Figure 4.6; since Perform Area Search is a kind of Execute
Mission use case, it includes (indirectly) navigating and flying the UAV, managing the
datalink, acquiring and processing surveillance data, and so on. So when we model
the operational contracts of the complete Perform Area Search, a great deal of the
CUAV behavior is ultimately included. We will simplify it somewhat here to make
the exercise more tractable, but we will include enough to give you a flavor of what's
involved. The beginning student shouldn’t be too discouraged at the complexity of
the system—after all, aircraft requirements and systems analysis usually take place
over several years by a set of highly specialized engineers.
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Because of the length of the scenario (and to illustrate the technique), the scenario
is broken across multiple sequence diagrams. The first is, in some sense, the “mas-
ter,” or high-level view. It is broken up into three subdiagrams, indicated with the
interaction references. Each of these refers to a separate diagram focusing on some
part of the overall scenario. In fact, this high-level sequence diagram is decomposed

along the same lines as the included use cases, and this is not accidental.

System Actors System use case
:Remote Pilot :Payload :Mission :Perform
Operator Specialist Area Search
R Ref
Use Case: Perform Area Search
Scenario 1
i Aircraft Takes Off

Preconditions:
Aircratt is on the ground, fueled
and ready to take off 7z 2 Z
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AN
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Figure 4.7 Perform Area Search Scenario 1—High-level view

Figure 4.8 shows the elaboration of the aircraft taking off. Note that this is sim-
plified to show the set of commands used by the pilot to control the aircraft and
the set of the responses and status messages from the aircraft to the pilot, but not
the precise order. This shows a useful way in which this kind of system—which is
continuously controlled by the pilot, but that control is mediated by a set of discrete
commands and messages—can be modeled. Note the use of the par (aka “parallel”)
operator. In this case, it means that these two sets of interactions are independent
and can be interleaved in any fashion. The upper section depicts commands from
the pilot and the lower set depicts status messages from the aircraft.

Once the aircraft takes off, it must navigate to the desired location. Of course,
the remote pilot is, in this case, flying the aircraft remotely. It would be onerous to
capture the hundreds or possibly thousands of individual messages and commands
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Figure 4.8 Perform Area Search Scenario 1—Aircraft takes off

issued as a result of flight adjustments to the remote controls. As in the previous
sequence diagram, we have satisfied ourselves with the set of commands that can be
issued (see Figure 4.9). We've added a constraint to show that the commands from
the pilot are order independent—that is, he can adjust any control at any time and
in any order, but the commands are sent to the aircraft no more frequently than 10

commands/second.

In the next figure, Figure 4.10, the aircraft is commanded to search a specific
area. As a part of this, the aircraft makes a grid of the rectangular area searched, and
flies over the area in each of the grid’s “columns” search for targets. When a target
is found, its location is noted and transmitted to the ground station. The aircraft
also maintains a list of identified targets. While doing an area search, the aircraft

navigates via its internal autopilot.
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The nested scenario in Figure 4.10 itself has a nested scenario for the set-up of
the area search. This is shown in Figure 4.11.
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Figure 4.11 Setup for area search

For the second part of this exercise, map the operational contracts identified in
the use case Perform Area Search into the Coyote system and subsystem architecture.
Remember that the Coyote UAV is a large-scale system. We are working with only
a single scenario of a single use case. In a real system development, there would be
an average of a dozen or more scenarios for each use case and this process would be
repeated for all scenarios and all use cases. Once several primary scenarios for a use
case are completed, additional “sunny day” scenarios may add only a few, if any, op-
erational contracts. The “rainy day” scenarios that model what happens when things
go wrong add more services and behavior. In any case, it is an important exercise to
go through to ensure that all required services are provided by some element in the
system, the system’s overall behavior is coherent, and the system architecture meets

all the requirements.




Systems Architecture 101

Problem 4.4 Identifying Subsystem Use Cases

Large projects are almost always constructed by multiple teams. The most common
way to organize such teams is by allocating subsystems to different teams. A subsys-
tem is a large-scale architectural piece of the physical system. It may be composed
of software alone or be a combination of multiple engineering disciplines, typically
software, electronics, mechanical, and chemical. These teams may or may not be
colocated but they need two distinct kinds of information to proceed effectively.

First, they need to know the requirements for their particular subsystem. If I'm
on a team constructing a power subsystem for a spacecraft, I need to understand
what capabilities are expected of my subsystem by its clients—the system, the system
actors, and peer subsystems. We organize the requirements of systems into use cases,

and it seems reasonable to do the same for subsystems.

Secondly, we need to know the operational context into which the subsystem
must fit: what are the clients of my subsystem’s services and what servers are available
for my subsystem to use? I need to know the interfaces that my subsystem provides
to those clients, including the pre- and postconditions, data contents and types,
quality of service constraints, and the allowable set of sequences of those services. 1

need the same information for interfaces that my subsystem requires.

These two kinds of information are provided from two sources, the systems
requirements model and the systems architecture. These two kinds of information
are clearly codependent. A different system architectural structuring will result in a
different set of use cases for the subsystems.

So the question is, “How is the identification of the subsystem use cases actually
done?” As mentioned above, it requires two sources of information, the system use
case model and the system architecture. The job is then to decompose the system
use cases into a set of subsystem use cases that are then wholly met by individual
subsystems. This is semantically accomplished with the «include» dependency. The
basic algorithm for the generation of the subsystem use cases is:

* For each system use case
— Identify clusters of requirements that are met by a single subsystem
—  Create a subsystem-level use case to organize that cluster

— Add the «include» dependency to link the subsystem use case to its parent
system-level use case

— Allocate the use case to the subsystem
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subsystem

At the end of this process, each subsystem has a set of use cases that capture its

requirements.

Every operational and operational quality of service requirement must be repre-
sented in at least one subsystem use case; some requirements will be represented in
all or most of the subsystems. Other requirements must be decomposed into derived
requirements, each of which maps into a single use case on a single subsystem. The
idea is that the subsystem requirements model represents a complete set of require-
ments for that particular subsystem. The subsystem team can then go construct their
system more-or-less independently, with assurance that their subsystem will fit into
the system architecture and function appropriately. Traceability is achieved because
the links between the system and subsystem use cases are traceable dependencies.
Explicit links to requirements traceability tools, such as DOORS, are commonly

added as well.

This effort results in new use-case diagrams focused at a more detailed level
of abstraction. In general, you want to create a new use-case diagram for each
decomposed system-level use case. In addition, you want to create one or more new
use-case diagrams for each subsystem. The missions of these two kinds of use-case
diagrams are different. The former shows the tracing of the parent-system use-cases
to their decomposed subsystem use cases. These diagrams will be kept in the system

Move the allocated subsystem use case to the requirements area for its specific
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requirements area of the model. The latter shows the set of use cases for the subsys-
tem, and will be located in the subsystem area of the model. The subsystem-level use
cases themselves will be specified in their associated subsystem package in the model.
Eventually, the subsystem area of the model will be passed off to the subsystem teams
and they will elaborate this package in their own design models.

For the first part of this exercise, use the subsystem architecture for the Roadrun-
ner Traffic Light Control system. Take the Configure System and Detect Vehicle
use cases, which we have specified in some detail earlier. Figure 4.13 shows this use
case in the use-case model.
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Figure 4.13 Roadrunner use cases

The Roadrunner architecture is shown in Figure 4.14. The functionality (and
requirements) represented by the Configure System use case must be mapped into
a set of use cases met by the set of subsystems. This system-level use case may not
impose any requirements on some subsystems or may result in multiple use cases
on some of the subsystems. It is exceedingly rare for a system-level use case to map
entirely onto a single subsystem, however.

To complete this portion of the exercise, create new use-case diagrams for the
Configure System and the Detect Vehicle use cases; in these new diagrams, decom-

pose the system use case into a set of subsystem-level use cases. Once done for each
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subsystem-level use case, create a use-case diagram for the IntersectionController
subsystem with all of its identified use cases.
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Figure 4.14 Roadrunner system architecture

The second part of this exercise is to do the same thing for two of the use cases
for the CUAV—Manual Attitude Adjust and Perform Area Search use cases. These
two use cases are highlighted in Figure 4.15 and Figure 4.16.

The first of these is the simpler of the two. The capability described by the
Manual Attitude Adjust means that a remote pilot in the ground station can control
the attitude (roll, pitch, and yaw) of the aircraft. To do this, the pilot will need to
monitor that information and have it displayed in some meaningful way and then
be able to control these aspects of the aircraft via the communications link. This will
have impacts on many subsystems, both in the ground station and in the aircraft.
The overall system architecture is shown in Figure 4.17. The two primary systems
are shown in the next two figures. The aircraft itself is detailed in Figure 4.18. This
shows the air vehicle subsystems and their interconnections. The ground station
is shown in Figure 4.19. This figure is less complex, but shows that there is a set
of manned control stations, each of which contains a UAV Control Station and a

UAV Monitoring Station.
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Figure 4.15 Manual Attitude Adjust use case

Figure 4.16 Perform Area Search use case
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The first part of the problem of identifying subsystem use cases is to map the
Manual Attitude Adjust use case to the set of subsystems identified here. The sec-
ond part of the problem is to map the Perform Area Search use case to the same
subsystem architecture.

Looking Ahead

In this chapter we did exercises to create the systems architecture, including the
specification of the subsystems and their requirements. The next step is to analyze the
use cases and construct what used to be called the essential model of the system, but
what is now more commonly called the platform-independent model. This model
constructs a set of objects, complete with their classes, relations, and behaviors, that
work together to realize the requirements of the use case. The Harmony process calls
this effort object analysis. That is the subject of the next chapter.



This Page Intentionally Left Blank



Object Analysis

What you will learn:

+ How to do object analysis

+  Underline the noun strategy

+ Identify causal agents strategy

+ Identify services strategy

+ Identify messages strategy

+ Identify real-world items strategy
+ Identify physical devices strategy
+ Identify key concepts strategy

+ Identify transactions strategy

+ Identify persistent information strategy
+ Identify visual elements strategy

+ Identify control elements strategy
+  Apply scenarios strategy

Overview

The purpose of object analysis is to:

identify the objects and classes essential to realizing the use cases
identify relations among the essential objects and classes
identify attributes and allocate them to classes

identify operations and allocate them to classes

specify behavior of reactive classes with state machines

specify operation behavior with activity diagrams

validate the correctness of the analysis model
109
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Since the requirements are organized into coherent use cases, object analysis is
normally applied one use case at a time, resulting in an object collaboration that real-
izes all of the functional requirements of the use case. This collaboration is unlikely
to be optimally efficient, but that is where object design comes in—the optimization
of the object analysis model. But first, we must identify the essential objects and
classes, the ones that absolutely must be there for the system to be correct.

Object analysis is a crucial phase of the Harmony spiral model." In each iteration
through the spiral process, a number of use cases are elaborated into an executable,
validated prototype. Figure 5.1 uses an activity diagram to depict the workflow for
object analysis.
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Figure 5.1 Object analysis workflow

For each use case in the prototype build, we identify objects and classes with object
identification strategies, and refine the models by adding details such as operations,
attributes, and various relations. The key to effectively constructing the collabora-
tion to realize the use case is to do continuous validation all the way through its
construction. Rather than create a collaboration of 50 objects and only then begin
to execute, it is far more effective to begin execution as soon as a single object is
added and to repeat the execution with each small incremental change. In this way,

' Chapter 2 discusses the Harmony process workflows in more detail.
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we can identify defects immediately and remove them just as quickly. Rhapsody
provides a very powerful environment with its model execution and debug facilities
that can greatly enhance this “extreme” or “agile” modeling approach.

In object analysis, we discover (more than invent) the essential properties of the
system and represent them as objects, classes, attributes, operations, states, transi-
tions, and relations. By “essential,” I mean that the collaboration is wrong if it doesn’t
include that element. For example, if I am modeling a “Make Deposit” use case
for a banking system, I would expect to see objects representing the customer, the
bank account, the value held within the bank account, and the transaction itself. If
those things are not represented, then the collaboration doesnt properly represent
the requirements in the use case. If we have a use case “Heat Food in Microwave
Oven,” then I would expect to see a door, door sensor, microwave emitter, a mecha-
nism to vary the microwave intensity, and timer (actual or implied)—or it’s not a
microwave oven cooking food, but something else. In the object-analysis step in the
Harmony process, we identify these essential properties and how they are related
to each other. And we do this in an executable fashion so that we can, at any time,
validate the portion of the object model constructed thus far.

Key Strategies for Object Identification

There are many ways to identify the objects within a collaboration. Table 5.1
outlines what I have found to be the most effective of these object-identification
strategies. These strategies are a key technique in the development of software with
the Harmony process.

Table 5.1 Object discovery strategies

Strategy Description

Underline the noun Used to gain a first-cut object list, the analyst under-
lines each noun or noun phrase in the problem
statement and evaluates it as a potential object, class,
or attribute.

Identify causal agents Identify the sources of actions, events, and messages;
includes the coordinators of actions.

Identify services (passive | Identify the targets of actions, events, and messages
contributors) as well as entities that passively provide services
when requested.

Identify messages and Messages must have an object that sends them and
information flow an object that receives them as well as, possibly,
other objects that process the information contained

in the messages.
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Table 5.1 Object discovery strategies (continued)

Strategy

Description

Identify real-world items

Real-world items are entities that exist in the real
world, but are not necessarily electronic devices.
Examples include objects such as respiratory gases,
air pressures, forces, anatomical organs, patient
information, chemicals, vats, etc.

Identify physical devices

Physical devices include the sensors and actuators
provided by the system as well as the electronic
devices they monitor or control. In the internal
architecture, they are processors or ancillary elec-
tronic “widgets.” Note: this is a special kind of
“Identify real-world items.”

Identify key concepts

Key concepts may be modeled as objects. Bank

accounts exist only conceptually, but are important

objects in a banking domain. Frequency bins for

an on-line autocorrelator may also be objects. This
. . € 1

strategy is an antipode to the “identify real-world

items’ strategy.

Identify transactions

Transactions are finite instances of interactions
between objects that persist for some significant
period of time. Examples include bus messages and
queued data. This may be done with ACID (atomic,
complete, isolated and durable) transactions or any
kind of transactions, state-based or otherwise.

Identify persistent infor-
mation

Information that must persist for significant periods
of time may be objects or attributes. This persistence
may extend beyond the power cycling of the device.

Identify visual elements

User-interface elements that display data are objects
within the user-interface domain such as windows,
buttons, scroll bars, menus, histograms, waveforms,
icons, bitmaps, and fonts.

Identify control elements

Control elements are objects that provide the inter-
face for the user (or some external device) to control
system behavior.

Apply scenarios

Walk through scenarios using the identified objects.

Missing objects will become apparent when required
actions cannot be achieved with existing objects and
relations.
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We will briefly discuss all these strategies, but note that the analyst need not
use them all on any specific project. These approaches are not orthogonal and the
objects they will find will overlap to some degree. The best way to use these strate-
gies is to find the two or three that work best for you and the problem at hand
and apply this selected set of strategies to find all of the objects and classes in the

analysis collaboration.
Underline the Noun Strategy

The first strategy works directly with the written problem or mission statement.
Underline each noun or noun phrase in the statement and treat it as a potential
object. Objects identified in this way can be put into different categories:

*  Objects of interest

e Classes of interest

* Actors

* Uninteresting objects
* Atctributes of objects
e Events

* Synonyms for any of the above
Identify the Causal Agents

For every effect, there must be an element that is the cause. This strategy looks to
identify the objects that cause things to happen—i.e., the ones that are behaviorally

active ones. These are objects which:

e Produce or control actions

* Produce or analyze data

* Provide interfaces to people or devices

e Store information

* Provide services to people or devices

* Contain more fundamental objects as parts

A causal object is an object that autonomously performs actions, coordinates the
activities of component parts, or generates events. Whenever there is some initiating

action, an object somewhere in the system must provide that service.
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Identify Services (Passive Contributors or Server Objects)

In an object-oriented analysis, all (or at least the great majority of) services will
be provided by objects. They may provide passive control (that is, they do what is
requested of them when it is requested), data storage, or both. A simple switch is a
passive control object. It provides a service to the causal objects (it turns the light
on or off upon request), but does not initiate actions by itself. Passive objects are
also known as servers because they provide services to client objects. Incidentally,
servers almost always are at the receiving end of unidirectional associations from
their clients; that is, clients know about the servers, but the servers do not know
their clients.

Identify Messages and Information Flows

For each message, there is an object that sends it, an object that receives it and,
potentially, other objects that process it. Messages correspond to information
and control flows and are realized by either operation calls or event receptions. In
either case, for every message, there is at least a sender object and a receiver object.
In addition, the message itself is often an object. Certainly that is true for remote
communications with network packets and datagrams. It is also true when the mes-
sage must be remembered or processed in some way (see the Identify Transactions
strategy, below).

Identify Real-World Items

Embedded systems need to model the information or behavior of real-world objects
even though they are not part of the system per se. An anesthesia system must model
the relevant properties of patients (name, weight, condition, billing information,
etc.), even though customers are clearly outside the anesthesia system. A tracking
system would typically model relevant aspects of the things that it tracks, such as
combat ID, target type, location, velocity and acceleration. These internal repre-
sentations of real-world elements are normally not simulations of those systems but
representations of information it is important for the system to represent. However,
in some cases, such as simulation systems, it is crucial to model the physics of such
systems as well, such as airflow in aerodynamic modeling.

Identify Physical Devices

Real-time systems interact with their environment using sensors and actuators in a
hardware domain. The system controls and monitors such physical devices inside
and outside the system and these objects are modeled as objects. Devices must also
be configured, calibrated, enabled, and controlled so that they can provide services
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to the system. When device information and state must be maintained or services
invoked, the devices are modeled as objects. Objects representing physical devices
almost always represent the interfaces to those devices and serve as a means of

encapsulating the invocation of services from them.
Identify Key Concepts

Key concepts are important abstractions within the domain that have interesting
attributes and behaviors. These abstractions often do not have physical realizations,
but must nevertheless be modeled by the system. Within the user interface domain,
a window is a key concept. In the banking domain, an account is a key concept.
In an autonomous manufacturing robot, a task plan is the set of steps required to
implement the desired manufacturing process, a key concept. In the design of a C
compiler, functions, data types, and pointers are key concepts. Each of these objects
has no physical manifestation. They exist only as abstractions modeled within the

appropriate domains as objects or classes.
Identify Transactions

Transactions are objects that represent the interactions of other objects and must
persist for a nontrivial period of time. Examples of transactions include bank-
account deposits and withdrawals, elevator requests, target designations for fire
control systems, and objects that manage reliable message delivery. In many cases,
the transactional objects disappear once the interaction has concluded (so-called
volatile transactions) while in other cases, the transactional objects must be retained

for long periods of time (also known as persistent transactions).
Identify Persistent Information

Persistent information is typically held within passive container objects such as stacks,
queuses, trees, tables or databases. Configuration data for various devices is one kind
of persistent data. Many systems also acquire information from their environments
and store this information. Of course, when information must be stored, objects
hold that information in their attributes. Examples include a system that remembers
patient data, user names and passwords, calibration tables for sensors, or flight data
for a black-box recorder.

Identify Visual Elements

Many real-time systems interact directly or indirectly with human users. Real-time
system displays may be as simple as a single blinking LED to indicate power status,
or as elaborate as a full Windows-like GUI with buttons, windows, scroll bars, icons,
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and text. Visual elements used to convey information to the user are objects within
the user-interface domain. These visual elements are themselves objects, and have
both attributes and behavior.

Identify Control Elements

Control elements are entities that control other objects. These are specific types of
causal objects. Some objects, called composites, often orchestrate the behaviors of
their part objects. These may be simple objects or may be elaborate control systems,
such as:

* PID control loops

* Fuzzy-logic inference engines

* Expert-system inference engines
e Neural-network simulators

e State-based systems

* Algorithmic systems
Apply Scenarios

The application of use-case scenarios is another strategy to identify missing objects as
well as to test that an object collaboration adequately realizes a use case. Using only
known objects, step through the messages to implement the scenario. The object
collaboration structure must support the elaborated use-case scenarios, including
providing the information to be manipulated and the services realizing the messages
in the scenarios. This is one of the most useful strategies because it allows you to

identify elements and behavior missing from your collaboration.

In the course of the exercises in this chapter, we will apply each of these strategies
to identify the objects within one or more collaborations. You will need to refer to the
written problem specification in the appendices as well as the previous requirements
models. In an actual project, usually anywhere from two to four of these strategies

is sufficient on any given use case.

Problem 5.1 Apply Nouns and Causal Agents Strategies

In this problem we will limit ourselves to applying the “underline the nouns” and
“identify causal agents” strategies. The first of these is a very common strategy
although, in my experience, the least helpful. The application of this strategy is to
simply read the parts of the problem statement that apply to the use case in ques-
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tion, and then underline the nouns and noun phrases. These noun phrases are our
candidate objects and classes.? The difficulty with the strategy, besides the fact that
it only finds the explicitly stated objects, is that it also identifies attributes, actors,
objects we don't care about, and synonyms for already identified elements. Thus,
the list requires careful pruning and won't be complete in any case. Also be aware
that, in this book, we have very short problem statements. In many systems proj-
ects, the problem statements will be much longer and complete, possibly running
to hundreds of pages for large systems. However, the strategy can be used even in
those cases, because we apply the strategy a use case at a time.

The causal agent strategy looks for autonomous and triggered behaviors in the
system and tries to identify the sources and targets of those behaviors.

The first part of this problem is to apply these strategies to—you guessed it—the
Roadrunner Traffic Light Control System. Because the system is relatively simple,
we'll apply the strategy to two system-level use cases: “Detect Vehicle” and “Fixed
Cycle Time Mode” (a subclass of the “Manage Traffic” use case). The problem state-

ment relative to the Detect Vehicle use case is shown below:

The Vehicle Detector

Three types of Vehicular Detectors shall be supported: subsurface pas-
sive loop inductors (SPLIs), above-surface infrared sensors (ASIs) and
above-surface radars (ASRs ).

Subsurface detectors shall use a wired interface to communicate
with the controller, while ASIs and ASRs shall support both wired and
secure wireless communication. All vehicle detectors shall be able to
perform vehicle counting.

In addition, ASIs and ASRs shall be able to receive directional trans-
missions from priority vehicle and emergency vehicle transmitters. The
maximum range of such reception shall be no less than 250 feet and no
more than 1000 feet.

Figure 5.2 shows the relevant measures for both ASI and ASR
detectors. When a vehicle enters the detection area (shown as the
shaded area in the figure), the detector shall report the presence of a
vehicle. Separate detectors are used for each lane in each direction.

It is true that you can also identify verbs to find behavior and adverbs for quality of service constraints
(especially ones with quantitative values), but our initial focus is to identify the objects and classes.
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Figure 5.2 Infrared and radar vehicle detector

The part of the problem statement that applies to the fixed cycle mode is shown
below:

Mode 2: Fixed Cycle Time

Mode 2 is the most common operational mode. In this mode, the lanes
cycle GREEN-YELLOW-RED in opposite sequences with fixed intervals.
The system shall ensure that, if any traffic light is non-RED, then all
the lights for cross traffic shall be RED and pedestrian lights (if any)
shall be set to DON'T WALK. Note that the turn lane times and/or
pedestrian times are only valid in this mode if (1) the turn lane and/or
pedestrian parameter is set TRUE in the RIC system parameters and (2)
if a sighal from the appropriate detector determines the existence of
waiting traffic for the turn or pedestrian light.

The durations of the light times shall be independently adjustable by
setting the appropriate parameters (see below). Note that in the table
the values in parentheses are defaults.
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Table 5.2 Mode 2 parameters

Parameter Value range Description
Reset Parameters FALSE, (FALSE) Sets all the parameters for
TRUE | Mode 2 to defaults

Primary Green 10 to 180 | (30) Length of time the primary green

Time (PG2) seconds | light is on

Primary Yellow 2t0 10 [ (5) Length of time the primary yellow

Time (PY2) seconds | light is on

Primary Red Delay 0Oto5 (0) Length of time between when

Time (PR2) seconds | primary red light is turned on and the
secondary green light is activated

Primary Walk 0 to 60 (20) Length of time the primary

Time (PW2) seconds | WALK light is on when the primary
GREEN light is activated

Primary Warn 0 to 30 (10) Length of time the primary

Time (PA2) seconds FLASHING DON’T WALK light is
on after the WALK light has been on

Primary Turn 0t0 90 |(20) Length of time the primary turn

Green Time (PT2) seconds | light is GREEN. Note: only valid
when the Primary Turn Light param-
eter is TRUE.

Primary Turn 0to 10 | (5) Length of time the primary

Yellow Time (PZ2) seconds turn light is YELLOW. Note: only
valid when the Primary Turn Light
parameter is TRUE.

The default values depend on the system configuration.

Table 5.3 Default cycle times for Mode 2

Turn Ped | Green | Yellow | Red | Walk | Don’t | Turn Turn
Lane | Signal Walk | Green | Yellow
F F 30 5 0 0 0 0 0
T F 50 5 0 0 0 15 5
F T 50 5 0 15 5 0 0
T T 50 5 0 15 5 15 5

The values in Table 5.3 are true for each direction, independently.
Thus, if the primary road has a car waiting in its turn lane and a pedestri-
an walking, but the secondary road has neither, then the following timing
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diagram represents the cycle times for simultaneous turn lane mode
(i.e., the turn lanes in both directions for a road turn together and the
straight traffic doesn't begin until the turn lanes have cycled to Red).

Scenario: Pedestrian and turn lanes enabled 001

Preconditions: Secondary lightis GREEN, Primary is RED; Car waiting
in primary turn lane; pedestrian waiting for primary walk signal; 5s left
in Secondary cycle GREEN
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Figure 5.3 Timing diagram for Mode 2 example

The first part of the problem is, then, to apply the Underline the Nouns and
Identify Causal Agents strategies to this part of the Roadrunner specification and
construct the resulting analysis object model.

The second part of this problem applies the strategies to the CUAV. The CUAV
is a much larger system than the traffic light control system—probably two or
three orders of magnitude larger (i.e., 100 to 1000 times larger). In such cases, it is
common to apply the object identification strategies at the subsystem level rather
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than the system level. This fits well into the normal work allocation for systems as
well. It is common to hand off subsystems to different (interdisciplinary) subsystem
teams with a specification of what that subsystem must do. We recommend that
the subsystem specification include the subsystem use cases, the system architecture
into which the subsystem must fit, and a complete specification of the interfaces the
subsystem must provide or may require from other elements (subsystems or actors).
These subsystem-level use cases are much more tractable in scope.

We will apply the strategies to a single subsystem level use case—Reconnaissance
Management. The use cases for this subsystem are shown in Figure 5.4. For this
exercise we will use the “Acquire Image” use case. As an aside, note that the peer
subsystems in the figure are prefaced with a lower-case “a”—this is used to indicate
that we are using the subsystem as an actor from this point of view. In reality, it is
a different metaclass with a very similar name. This allows us to provide behavior
for the actors (called “instrumenting the actors”) for simulation and test without
modifying the actual subsystems they represent.
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Figure 5.4 Reconnaissance Management use cases

It should be noted that one of the difficulties of applying the Underline Nouns
strategy in big systems is that the textual specification may not be organized in a
fashion to facilitate a per-use-case application of the strategy. It may require reorga-
nization of the textual specification or multiple passes through the document as a
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whole to identify all the sections related to the use case under consideration. If the
document is organized by subsystems and then by use, this problem may disappear
but, in my experience, that is an unusual organization.

The Unmanned Air Vehicle (VAV)

The Coyote UAV is meant to be a multipurpose reusable UAV with multi-
mission capability. It is meant fo operate at an altitude of up to 30,000
feet with ground speeds of up to 100 knots (cruise) and 150 knots
(dash) and carry a payload of up to 450 Ibs for durations in excess of

24 hours. The Coyote is meant to fly unimpeded in low-visibility environ-
ments while carrying either reconnaissance or attack payloads. While
controllable from the ground station CMPCS, it is also capable of fly-

ing complex flight plans with specific operational goals of systematic
area search, ground route (road-based) search, and orbit surveillance of
point targets. Coupled with manned control from the ground, the Coyote
provides sustained 24-hour flight with real-time visual, infrared or radar
telemetry, with target recognition preprocessing. Communications are
jam-resistant, although need not be antijamming in a high ECM environ-
ment. Control commands shall be encrypted while telemetry data can be
compressed but unprotected. Telemetry rates for visual felemetry sup-
port 30 frames-per-second (fps) at 640 x 400 resolution. Range of flight
is meant to be fully supported within line of sight (LOS) range but since
the Coyote also has the ability to be passed among different CMPCSs,
its range is considerably greater than LOS. For navigation, the Coyote
has on-board Global Positioning System (GPS) based-navigation as well as
being directly controllable from the ground station.

Unlike many smaller UAVs, the Coyote does not require specialized
launch and recovery vehicles. It can use a short runway for either auto-
mated or remote-controlled takeoff and landing.

The Coyote Mission Planning and Control System (CMPCS)

Mobile CMPCS with capability to control up to four UAVs with a manned
control station per UAV that fits into a smaller towable trailer. Each
control station consists of two manned substations, one for controlling
the CUAV and one for monitoring and controlling payloads. If desired,
both functions can be slaved together into a single control substa-

tion. Control of the aircraft shall consist of transferring navigational
commands which may be simple (set altitude, speed, direction), opera-
tional (fly fo coordinate set, orbit point, execute search pattern, efc.),
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planned (upload multisegment flight plan) or remote controlled with a
joystick interface. Stable flight mechanics shall be managed by the air-
craft itself but this can be disabled for remotely controlled flight.

The CMPCS displays real-time reconnaissance data as well as main-
taining continuous recording and replay capability for up to 96 hours of
operation for four separate CUAVs. In addition, with attack payloads,
the Coyote can carry up to four Hellfire missiles with fire-and-forget
navigation systems.

The Unmanned Air Vehicle (UAV)

Mission Modes

Beyond flight modes, CUAV shall be designed for highly flexible mission
parameters. Normal mission modes include:

* Preplanned reconnaissance

* Remote-controlled reconnaissance

*  Area search

* Route search

*  Orbit point target

*  Artack

A mission can consist of any number of sequential submissions, each
operating in a different mission mode, depending on the current payload.

The Coyote Mission Planning and Control System (CMPCS)

The CMPCS is housed in a 30 x 8 x 8 triple-axis trailer that contains
stations for pilot and payload operations, mission planning, data exploita-
tion, communications, and SAR viewing. The CMPCS connects to multiple
directional antennae for communication with the CUAVs. All mission data
is recorded at the CMPCS since the CUAV has no on-board recording
capability. The CMPCS has a UPS that can operate at full load for up to
four hours in addition to using commercial power or power generators.

A single CMPCS can control up to four CUAVs in flight with one
station per CUAV. Each CUAV control station provides both pilot and
payload operations with separate control substations, although both
functions can be slaved to a single substation for low-vigilance use.
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For the reconnaissance payloads, the CMPCS shall provide enhanced
automated target recognition (ATR) capability for all surveillance
types—optical, infrared, and radar. While the CUAV has a rudimentary
capability, the CMPCS provides much more complete support for the
quick identification of high-value targets in the battlefield. This capa-
bility is specifically designed to identify mobile and time-limited targets
that may only be exposed for brief periods of time before they go back
into hiding. The system is expected to provide high clutter rejection and
a low false-positive error rate. The ATR shall be able to identify and
track up to 20 targets within the surveillance area, with likely idenftifi-
cation and probability assessments for each. In addition to the ATR, the
payload operator can add targets visually identified from reconnaissance
data or gathered from other sources. The battlefield view can be trans-
mitted over links to remote command staff for tactical and strategic
assessment.

Image Acquisition and Processing

Images may be acquired from all three sensor platforms—optical, FLIR
(forward-looking infrared), and SAR (synthetic-aperture radar). Opti-
cal and FLIR are passive systems using emitted energy from terrain or
targets to gather information. The SAR is an active sensor, painting
relatively stationary targets with energy (in the microwave range) and
using the reflection of these pulses to determine reflectivity and alti-
tude. The optical and FLIR resolution for single images may be as high as
1900 x 1600 resolution while real-time video for all sensor platforms is
limited to 640 x 480 resolution at a rate of 30 fps. Streaming imagery
shall be sent with enough redundancy so that complete loss of random
frames shall not affect the quality of other frames. The sensor plat-
forms may be focused at any range from 10 meters to infinite and may
be zoomed up to 100x actual. The sensor platforms shall be mounted on
a gimbaled assembly so that the system can be aimed without affect-
ing the attitude of the CUAV. The FLIR includes a laser range finder to
determine target range so that it can be used in fire control applications.
The SAR shall emit a series of pulses meant to emulate the behavior of
much larger physical aperture antenna; the images from the SAR are a
combination of timed radar surface reflections to be combined into an
SAR image in the ground station using Fourier tfransforms. Thus, a single
SAR image results from a set of images each resulting from a single
radar pulse from the SAR platform, but combined in the ground station.
Aiming the SAR is done through the use of Doppler sharpening, limiting
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the amount of information that must be fransmitted to the ground
station to construct the SAR image. The use of two pulse emitters in
the SAR platforms allows the interference patterns to be constructed,
providing altitude determination as well as radar reflectivity data.

Images may be compressed using lossy or nonlossy methods to
minimize communication bandwidth requirements. The JPEG 2000
compression standard shall be used; for streaming video the associated
MJP2 standard shall be used. The compression may be set dynamically
by the payload operator to be 0% to 80% with the default setting to be
nonlossy 50% compression. The imaging system is required o achieve
the desired compression only within 20% of the requested due to the
variances in the image contents. The selection of lossy or nonlossy
compression shall be determined automatically by the imaging system,
switching to lossy compression only when the desired compression rate
cannot be achieved using lossless compression.

For this part of the first problem, apply the Underline the Nouns and Identify
Causal Agents strategies to the “Acquire Image” use case, and draw the resulting
object analysis model.

Problem 5.2 Apply Services and Messages Strategies

The Services strategy looks for the services or “operational contracts” that the system
containing the collaboration provides. Each of these services must either be met by
a single object in the collaboration or be decomposed into nested services (possibly
multiple times), each of which must be provided by a single object. The Messages
strategy applies the same principle to messages and information flows; every mes-
sage or information flow must be either provided or received by an object in the
collaboration. In some sense, these strategies are the same. However, in the former
case, the strategy is applied when the system containing the collaboration is speci-
fied in terms of a set of operational contracts (services) and, in the latter case, the

strategy is applied when the system is specified by information flows.

For this problem, apply these two strategies to the same use cases as before for the
Roadrunner and Coyote systems. Because this level of detail is missing in the work
that precedes the exercise, both operational contract and information flow views of
the Roadrunner Traffic Light Control System and CUAV systems are given below.
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The two use cases under consideration for the Roadrunner system are “Detect
Vehicle” and "Fixed Cycle Time Mode.”

The services for the subsystem architecture of the Roadrunner Traffic Light
Control System are shown in Figure 5.5. We could explicitly show the interfaces
attached to the ports if desired, but chose not to in this case.

Roadrunner System Architecture:
Mission: Show subsystem services
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Figure 5.5 Roadrunner services

The next figure (Figure 5.6) shows the same structure but focuses on the infor-
mation flow.

For the UAV, consider the Acquire Image use case and apply this strategy to the
identification of objects in the Reconnaissance Management subsystem. There are
a number of services associated with acquiring an image, and certainly data must
be passed. Draw the class diagram derived from applying this strategy.
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Roadrunner System Architecture:
Mission: Show subsystem services
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Figure 5.6 Roadrunner information flows

Problem 5.3 Apply Real-World Items and
Physical Devices Strategies

These two strategies are related in the sense that they seek to identify objects and
classes that represent things that exist in the physical world. The first of these—real-
world items—seeks to identify objects in the real world that have information that
must be managed in the system or are resources that must be managed. For example,
in a banking system, a “customer” is clearly an object in the real world but we must
maintain information about that customer, including Name, Address, and Tax ID.
If we think about a turreted 20mm machine gun aboard, say, a AH-1 Super Cobra
attack helicopter, the rounds of ammunition are a resource that must be tracked and
managed and its targets are certainly real-world elements that must be represented
and managed.

The latter strategy identifies physical devices. These devices are not devices exter-
nal to the system but, rather, a part of it. Some beginning modelers will model all
physical devices that the system must monitor and control as actors, but that is not
always the best approach. Using the “Rule of the Box,” a piece of hardware is only
an actor if it is not integrated with the software into a shipped system.?

3 The “Rule of the Box,” you will no doubt remember, states that if the hardware is “in the box

shipped to the customer” then it is not, by definition, an actor. If it is provided by the customer and
connected to the system you ship, then it is likely to be an actor.
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Apply these strategies to the same use cases as the previous problem.

Problem 5.4 Apply Key Concepts and
Transaction Strategies

The Key Concepts strategy is the antipode of the real-world items strategy. It seeks
to find the essential concepts of a domain of discourse, particularly when these ele-
ments are abstractions and have no physical manifestation. An “account” in a banking

system, or “thread” in an operating system are both examples of this strategy.

A transaction is the reification of an interaction (among objects) into an object
itself. This is done when that interaction has a lifetime of its own and persists at
least until the transaction is completed. A “withdrawal” from a bank account is a
transactional object because it must be remembered for a period of time and reported
to the customer for account reconciliation. A request for an elevator to go to a par-
ticular floor is also a transactional object because it must be remembered until the
elevator actually arrives at the floor.

For this problem, apply these two strategies to the Roadrunner Traffic Light
Control System Detect Vehicle use case and also to the Coyote UAV Acquire Image

use case.

Problem 5.5 Apply Identify Visual Elements and
Scenarios Strategies

In this problem we will consider the Identify Visual Elements strategy along with the
Scenarios strategy. In systems with nontrivial user interfaces, these strategies often
work well together, because one of the issues that arises when considering scenarios
that involve the human users of the system is how the user interfaces gather and
provide information to the internal parts of the system that must deal with and
respond to that information.

While all the strategies have their uses, and every analysis problem requires the
application of at least two to three strategies, the Scenario strategy is my favorite. It
has proven to be, for me at least, the easiest way to construct a verifiably working
collaboration of classes to realize a use case. The strategy is actually very simple.
Simply start with a use-case scenario. The use case will have a (possibly large) number

of scenarios as exemplars, illustrating examples of the use case unfolding as specific
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messages or events come in to the system. Since these scenarios are “black box,”
there is only a single lifeline representing the system (or use case). We will simply
elaborate object roles to show how the scenario unfolds at the object, rather than the
system, level. In small-scale systems, such as the Roadrunner Traffic Light Control
system, system-level use cases are used. In large-scale systems, such as the Coyote
UAV, this is normally done at the subsystem level of abstraction.

This elaboration can be done “in-line” or by decomposition. By “in-line,” I mean
that I copy the original scenario and start adding object lifelines to the copy. The
decomposition approach is done by decomposing the lifeline into a more detailed
scenario, a feature added in UML 2.0 and supported by Rhapsody.

During the object-level scenario elaboration, I will uncover objects, services,
and parameters (data). When I discover that I need to have a service performed

somewhere inside the system, I ask myself the following questions:

*  What object has the information necessary to perform this service?

*  What object has the proper interfaces necessary to perform this service?
*  What object has the responsibility to perform this service?

I then add the object, type it with a class, add the service to the class, and create
an association between the client and the server classes.

By this means, I add objects, services, and relations to detail this scenario. I may
start at the beginning of the scenario, or somewhere in the middle—perhaps at a
very important part of the use case or some part that I feel I have a good handle on.
As I add objects to the scenario, I in tandem add relevant classes to a class diagram,
filling in the operation calls and event receptions to handle the message, attributes
to supply the information required for the processing, and associations necessary to
support the sending of messages within the collaboration.

Figures 5.7 and Figure 5.8 illustrate how this elaboration takes place. Figure
5.7 shows the high-level interaction. The lifeline in the middle is the use case, but
it can just as easily be the “System” or another high-level object. The point is that
this element internally contains parts (typed by classes) that interact to provide the
high-level behavior shown.

In the elaborated copy of this sequence diagram (Figure 5.8), detailed elements
“inside” the system of interest are shown with their detailed interactions. Note that
we retain the original high-level use case or system lifeline. This isn’t strictly neces-
sary—we could “reroute” the messages to the internal parts—but the advantage for
the former approach is that it becomes trivial to map this interaction back to the
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Figure 5.7: High-level sequence diagram before elaboration

original, thus demonstrating the equivalence of the two. If we reroute messages in
the latter diagram we can still demonstrate equivalence, but it becomes less trivial

and therefore we are more likely to make errors. In any event, the point of the latter

diagram is to show how the low-level internal parts

collaborate to achieve exactly

the behavior described in the high-level sequence diagram.
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Figure 5.8 High-level sequence with elaborated detail
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For the first part of this exercise, continue on with the Roadrunner Traffic Light
Control System “Detect Vehicle” use case. Copy the original sequence diagram(s) and
add the object lifelines as you do so—the “scenario elaboration” approach. Provide
both the elaborated sequence diagram(s) and the class diagram when you’re done.

At first glance, the Detect Vehicle use case doesn’t seem to be an ideal candidate
for this strategy. After all, the “scenario” consists of a single message “vehicleDetect”
from the vehicle to the system (well, almost anyway). However, a use-case scenario
should never be a single message. A scenario with a single message should always be
modeled as an element of a large scenario. So, I decided to include the configuration
of the detectors as a part of the scenarios. Each of the detectors must be configured
differently. As a starting point for this exercise, use the following three scenarios:
Figure 5.9, Figure 5.10, and Figure 5.11 for the starting point of the elaboration.
You'll no doubt notice the essential similarity between the scenarios, but each
detector type has its own configuration parameters. Additionally, the lanes can be
configured separately or all at once. For example, in Figure 5.9, which represents
the scenario for the passive loop inductor, the first parameter is the lanelD. This
parameter indicates for which lane you're configuring the detector. Additionally, the
sensitivity for the detector is set by the second parameter. Since passive loop induc-
tors look for a change in resistance, this sets the trigger point for the detection to
one of 11 values (0 essentially turning off the detector). There is a special “sentinel
value” for the lanelD that configures or enables all the detectors at once, if desired.

‘Operator PrimaryV.Ve PrimaryTunV:Ve :Detect
i’ " hicle hicle Vehicle
Scenario: Detect Vehicle 1,
Passive Loop Inductor - - .
| é conﬁgurePassgf?’eLonpDetedor(\agD:int | Each lane's detector
Use Case: Detect Vehicle é resistanceSer@ivity:int) 7 | can be configured .
7z 7 7 | independently by setting
Scope: System ///5 7 L the lane ID. '0"is a
; o p . (o
- :é passi\?;:/‘LooplnductorCo figuration(lanelD:int, | ‘sentinel value" which
Description: %= % resistanceSensitivity:int) means ALL lanes.
Passive loop inductor is %',_4. ’ | i i
configured and enabled, then cars 7 7 | ResistanceSensitivity is in

the range of 0 (OFF)to 10
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=
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>

,, i
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: ; 7

Vehicles with suficient metal to é % detect()

trigger detector with an adequate é 7

change in resistance are A 7

—n

detected. Re

Detect Vehicle Scenario Get Stats

Figure 5.9 Roadrunner passive loop inductor scenario
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What happens if the lanelD or the sensitivity provided is out of range? In that case
(scenario not shown—another recommended “exercise for the reader”), the invalid
command is discarded and the previous settings are returned to the operator. As is
normal, there are more fault or “rainy-day” scenarios than normal or “sunny-day”
ones. In the actual application of the strategy on a real project, you would elaborate
every scenario, especially in the sections of the scenario that are unique.

In Figure 5.10, the infrared detector requires not only the lanelD and sensitivity,
but also the low and high frequency, since this detector can be set to look for changes
within a frequency range. The low- and high-frequency ranges are selected from
11 predefined values, with the constraint that the high frequency must be greater
than or equal to the low-frequency setting. What happens if the operator violates

this constraint? Hmmm, sounds like another scenario!
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Py
2

Detect Vehicle Scenario Get Stats
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Figure 5.10 Roadrunner infrared detector scenario

The radar detector is the only active emitter. It only emits a specific frequency
but both the strength of the emitter and the sensitivity of the detector can be set,
as illustrated in Figure 5.11.

Each of these scenarios references another—one that returns statistics to the
user, including average vehicle count per hour and total count since reset. This lat-
ter scenario is referenced by all three scenarios because the generation of statistics
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Figure 5.11 Roadrunner laser detector scenario

depends only upon the detection of a vehicle and not how they are detected. This

shared scenario is shown in Figure 5.12.

The astute reader will note that the inclusion of the formal parameter flowID,

along with the diagrammatic comment describing the effects of the different values
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Figure 5.12 Referenced Get Stats scenario
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of this parameter, is just a sneaky way of putting many different physical scenarios
on a single sequence diagram, as is the use of the unordered interaction operator.
The unordered operator simply states the messages within the operator can occur
in any order whatsoever—that is, there is no causality in the order in which they
arrive. I could have, in principle, simply created a different sequence diagram for
each order of arrival of detections from four different lanes and combination of
flowIDs, resulting in many highly similar but slightly different scenarios. I find the
use of these operators a more parsimonious means of achieving the same end.

As far as the human interface goes, the external Ul has already been planned out
and provided in the requirements specification. The details can be seen in Appendix
A, but the organization of the Ul is shown in Figure 5.13.
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Figure 5.13 Roadrunner traffic light control system front panel display
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This front panel display must support the selection of the appropriate parameters
for this use case (notably the configuration parameters for the sensors) and for the
display of those same parameters and the computed statistics.

For the latter part of this exercise, let’s take the scenarios of the Acquire Image
use case for the CUAV. In this case, though, add a reference sequence diagram to
represent the use-case lifeline at a more detailed level. For consistency, be sure that
for every message on the use-case sequence diagram going into the use-case or system
lifeline, there is a corresponding message of the same name leaving the Environment
lifeline in the more detailed scenario and for every message leaving the use-case or
system lifeline, there is a corresponding message entering the Environment lifeline
in the more detailed use case.

This decomposition is easy to do in Rhapsody, Simply double click on the
lifeline (or right click and select Features) to open the Features dialog. The dialog
box contains a Decomposed field, which is the reference to the nested sequence
diagram. From that dialog, you can either link to an existing sequence diagram or
create a new, empty one.

Figure 5.14 High-level sequence diagram with decomposed lifeline

The “UseCasel” lifeline in Figure 5.14 is decomposed into the more detailed
interaction in Figure 5.15. The key to the consistency between the high-level and
decomposed sequence diagrams is the use of the ENV (environment) lifeline in
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Figure 5.15. It provides the “glue” between the levels of abstraction in the two
diagrams so be sure that the messages entering and leaving the UseCasel lifeline
match exactly the messages entering and leaving the ENV lifeline on the decomposed

sequence diagram.*

Decomposing sequence diagrams in this fashion was added in UML 2.0 and is
now the preferred way to add lower-level detail of interactions in your models. This
is especially true for large systems in which you might have to decompose high-level
sequence diagrams through potentially multiple levels of abstraction (e.g., system
level = subsystem level — component level — collaboration level).
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Figure 5.15 Sequence diagram for decomposed high-level lifeline

For the Reconnaissance Management subsystem Acquire Image use case, use the
use-case scenario shown in Figure 5.16 to start your object identification. In your
solution, provide both the decomposed sequence diagram and the resulting class
diagram.

* And yes, you have to maintain this “glue” manually. If you add messages in one diagram that imply

changes in the other, you have to do that yourself.
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Figure 5.16 Acquire Image scenario

Problem 5.6 Merge Models from the Various Strategies

In this last problem of the chapter, you must merge together the different models that

have arisen from the application of the different strategies. In actual use, the models

would be most likely incrementally constructed by taking what’s already there and

adding objects, classes, relations, and features identified in additional strategies. In

this pedagogical chapter, we have applied each strategy more-or-less independently.

Therefore, for this problem, merge together the solutions from the different strate-

gies and resolve any incompatibilities arising from different approaches to represent

the same concept for both the Roadrunner Traffic Light Control System and for

the Coyote UAV. The resulting use-case collaborations should be shown on a single

class (or structure) diagram for each system.’

5

By way of a workflow hint, create a new diagram and drag or copy elements from other diagrams to

it, then use the Complete Relations Tool (menu Layout — Complete Relations) to draw the existing
relations among the elements, then manually adjust the layout to get a pleasing graphical depiction.
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For the Roadrunner Traffic Light Control system, we've worked, in part, on
two different use cases, Fixed Cycle Time Mode and Detect Vehicle. The system
includes the elements that collaborate to realize both these use cases. These use-case
collaborations have been shown as two independent class diagrams and they will
continue to be shown in that way. Why?

The reason is that to scale the use of modeling techniques to real-world problems,
we must have some criteria for deciding what goes on which diagrams. The criteria
I've been (strongly) recommending is the notion of a “diagram mission”—i.e., each
diagram should have a single important concept that it’s trying to show. If we main-
tain the diagrams as independent, then each maintains the purity of its purpose.
However, there almost always is overlap between different collaborations in terms of
the elements they employ. That’s perfectly fine, provided that the overlapping ele-
ments are the same elements in all relevant views. A tool with an underlying model
repository—such as Rhapsody—will maintain the integrity of the classes, objects,
operations, etc. used in multiple views. So for this exercise, show the Fixed Cycle
model class diagram separately from the merged Detect Vehicle use case. Identify to
yourself any elements they have in common and ensure that these shared elements
meet both purposes for which they are intended. Note, however, that this chapter’s
focus on identifying objects and classes and class structure for Fixed Cycle model is
pretty trivial—the interesting part is in the behavior of these elements, as captured
with the state machines for those class elements (PedestrianLightAssembly and
VehicleLightAssembly, primarily).

The CUAV is a larger scale system, so we've narrowed our focus onto a single use
case (Acquire Image) for a specific subsystem (Reconnaissance Management). One
can imagine teams of people working independently, possibly in different areas of
the world, to develop the use cases for their own subsystems. As long as they meet
the interface, functional, and quality of service requirements, those subsystems will
plug into the system architecture seamlessly. This is best done iteratively, bringing
the partially developed subsystems together repetitively at well-defined integration
points in an iterative development cycle, and formally testing the system functional-

ity as it grows over time.

For this problem, though, we'll limit ourselves to merging together the collabora-
tions derived from applying the different strategies to a single use case.

Finally, for both sample problems, answer the following questions:
*  Which strategy worked best for you, and why?
*  Which strategy worked the least well for you, and why?
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* Did some strategies seem to be better identifying elements in one problem or the
other? Can you generalize that so that you know when to apply which strategies?

¢ What combination of strategies do you think will be most effective for you?

Looking Ahead

We have used a number of different strategies to identify the “essential” or “analysis”
objects and classes. These strategies are only partially orthogonal; that is, they identify
some, but not all, of the same model elements. In practice, the application of two or
more strategies is required to identify all of the objects in the analysis model. These
M <« . » . . . .
objects are “essential” in the sense that their presence is required by the nature of
the problem being solved. A microwave oven had better have a microwave emitter,
a track manager requires the notion of a track, and a navigation system needs the

concepts of position, flight plan, and waypoint to do its job.

The analysis model exactly corresponds to the idea of a platform independent
model (PIM) in the OMG’s model-driven architecture (MDA).° It is devoid of
design decisions. The analysis model is driven by the functionality requirements
specified by the use cases of the system. The objects, classes, attributes, operations,
and relations identified may be optimized in many different ways using many dif-
ferent design approaches with many different technology decisions to construct the
platform specific model (PSM).

While analysis is all about identifying elements required to meet the functional
requirements, design is all about optimizing the analysis model to meet performance
requirements and other design optimization criteria. Different optimization goals
or different technology selections result in different PSMs from the same PIM. The
advantage of this approach is independence of your analysis models from “technology
churn” and the ability to adapt the analysis model to meet different optimization
criteria, to use different technologies, and to execute on different platforms. In this
way, the approach insulates you from technology churn and increases the interoper-
ability of your system and its portability to new platforms. For systems that have
a long life—such as military and aerospace systems—or systems that are part of
product families and so have high reuse requirements, the MDA approach is both
highly practical and effective. How to achieve this optimization through design is
the subject of the next two chapters.

6

See http:/fwww.omg.org/mdal.
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Architectural Design

What you will learn:
*  What do we mean by the term “architecture?”
+ How to make an integrated architecture
- Five strategic views of architecture
- Subsystem and component architecture
- Concurrency and resource architecture
- Distribution architecture
- Safety and reliability architecture

- Deployment architecture

Overview
What is architecture? IEEE defines it as follows:!

An architecture is the fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.”

So what does that mean in practice? In the Harmony process we define archi-
tecture to be the set of strategic design decisions that specify how the elements in
the system are organized and interact. The key terms in our definition are strategic
and design. In the Harmony process, design is all about optimization. The analysis
model is driven primarily by the functional requirements of the system—what
the system needs to do to be correct. Design is driven by the quality of service

' IEEE STD 1471-2000.
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requirements—how well those functions must be achieved—and other optimality

characteristics collectively known as “design criteria.”

An analysis model may be optimized in almost infinitely different ways to
achieve different optimization goals. For example, memory usage can be optimized
at the expense of worst-case performance, or reusability can be optimized at the
expense of development time. The analysis model specifies what must be present
for the solution to be correct; design specifies a solution that is optimal against the
criticality-weighted set of design criteria. A set of collaborating objects identified
in object analysis can be run in a single thread or it can be run with one thread per
object. The number of threads, their properties, and which objects execute within
those threads is determined by optimizing the execution of those objects against the
weighted set of design criteria.

The other key term in the Harmony definition was strazegic. By strategic, we
mean that all system elements must be aligned with the architectural decisions. Since
architectural design decisions are an attempt to optimize the system at a gross, or
overall, level, such decisions are strategic. The Harmony process applies design at two
other levels of abstraction as well. Mechanistic design is focused on the optimization
of collaborating sets of objects—specifically, at the level of use-case collaborations.
Those “mechanistic” design decisions are local only to those collaborations specifi-
cally addressed, and so their scope is an order of magnitude—or more—smaller
than the strategic architectural design decisions. The smallest scope for design in
the Harmony process is detailed. Detailed design focuses on the optimization of
individual classes and objects. Mechanistic and detailed design are the subject of
the next chapter.

Regardless of the scope of the design effort, design proceeds largely through the
application of design patterns.? Design patterns are not magic bullets by any means;
they are simply the codification of what good designers already do. Design patterns
capture generalized solutions to problems that reoccur in a variety of application con-
texts. The very best designers already reapply previously proven design solutions, even
if they proceed in an intuitive manner. The design pattern approach captures those
solutions in reusable ways that facilitate their reapplication to other problems.

* For more detail on this topic, the interested reader is referred to the author’s book Real-Time Design

Patterns: Robust Scalable Architectures for Real-Time Systems, Addison-Wesley, 2002.
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The Harmony design approach is very design-pattern oriented. A design pattern
has four very important properties:

1. The problem context

2. What the pattern seeks to optimize
3. The solution (the pattern itself)

4. The pattern’s consequences

The problem context identifies what are the characteristics of the problem
required for the pattern to be applicable. These characteristics specify a set of param-
eters by which you can select suitable problems for the pattern. The optimization
criteria are the goals of the pattern—that is, what aspects of the problem this pat-
tern optimizes. The solution is the pattern itself, usually represented as a class or
structure diagram, possibly accompanied by statecharts for some of the elements of
the pattern, and sequence diagrams show how the elements in the pattern interact
to achieve the pattern’s optimization goals. Lastly, the consequences are the explicit
statement of the pros and cons of applying the pattern. Since the design—and the
pattern—is about optimization, it inherently optimizes some aspects at the expense
of de-optimizing others. Knowing which aspects are optimized and de-optimized

allows for the selection of appropriate patterns for the circumstances.

To apply design patterns in the Harmony process, you typically start with a
problem context—a set of structural elements with inherent relations identified in
the problem statement or from the problem semantics, such as an analysis collabora-
tion. Then the design criteria are explicitly stated and ranked in order of criticality.
Design patterns that optimize the most important of those criteria at the expense
of the least important are selected. Lastly, the design patterns are applied by add-
ing in the structural elements (classes and object roles) from the pattern into the
original problem context, and adding and adjusting the relations as appropriate for
the pattern. This usually results in a certain amount of restructuring of the original

elements, a process known as “refactoring.”

For architectural design, this process is laid out in Figure 6.1. This is an activity
diagram that shows the developer workflow during architectural design. The Har-
mony process identifies five key architectural aspects:® subsystem and component
architecture, concurrency and resource management architecture, distribution
architecture, safety and reliability architecture, and deployment architecture. These

> In some systems, there is a sixth aspect—security architecture—as well. It is less common but is

reflected in the figure.
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aspects are explicitly identified because the computer science literature normally
treats these as independent topics and each has its own independent set of design
patterns. The overall architecture is the merged sum of the selected patterns from

each of these key architectural aspects.

AICRIEECIUral_Uesign

QoS_Requirements

ldentify and rank
design criteria

e

Design_Constraints

Analysis_Mode|

Y

Ranked_Design_Criteria \

Architectural_Design_Patterns Srlerct

Mot all architectural aspects
necessaily appear ineach

design
patterms

prototype. It depends on the
missionof the prototype

#
/
,/.

Apply_Design_Patterns

v !

Define
Distribution
AICNITECTUre

Defing Subsystem
and Component
Architecture

Define
Deployment
Architer ture

Define Security
Architecture

i [else]

grenmre nk
| Optimized_Architecture_Modsl g —— L !

| —@®

Define Safety and
Reliabilily
Architecture

& k.
lest
Architecture via
Execulion

Define Curisurrency and
Resource Architecture

REfne
Scenarios

Arch_Scenarios

Figure 6.1 Harmony architectural process

So, how does one actually apply a design pattern? The process is best illustrated
with a simple mechanistic example. Figure 6.2 shows a collaboration of classes that
collaborate together to gather optical data used to determine train speed and then
update the data’s clients—the text view on the display and for the closed-loop speed
controller.* This is an analysis-level collaboration and, in fact, executes. It is not
necessarily, though, optimal. As identified in the comment in the figure, how do
we efficiently update these clients for train speed with new data?

# To be clear, a server is an object that provides something, either data or services, by request. A client

is the requestor of those data or services. In the context of Figure 6.2, TrainSpeed is a server for the
information needed by clients TextView and SpeedController.



Architectural Design 145

There are several possible solutions. One is to simply have the clients ask for
data periodically. This may result in the clients spending many CPU cycles asking
for data even though it hasn’t changed. Alternatively, the Train Speed class can send
the updated values to the clients when the values change. The downside of this
approach is that the Train Speed must know, at design time, all of its clients. This
solution isn’t flexible if we want to dynamically add or remove clients, or if clients
might be relocated onto other processors.

How do we efficiently update
the TextView and the
SpeedController with new data
whenit is available?

Analysis Model

(pre-design pattern)

Text\iew
= font:int

OpticalSensor TrainSpeed 1 1 = xPos:int

1 o . | = yPos:int

= senseData:double > speed:double
| W display():void
1 HgetSenseData():void W getState():double L
ADConverter & setState(s:double):void | 1
1 SpeedController

HighPassFilter H SpeedSetting:double

H SpeedActual:double
H cornerFreq:double

) S controlSpeed():void
fitter(s:double):double

4

HWSensor

Figure 6.2 Analysis collaboration

What are the design criteria we wish to optimize? Let’s say that our two most
important design criteria are 1) that the update should be efficient (that is, the clients
are only updated when there is new data), and 2) that we wish to be able to easily add
clients downstream, possibly even at run-time, without affecting the TrainSpeed and
related classes. If we search the literature, we see that the Observer pattern optimizes
these two characteristics. Figure 6.3 shows the structure of this pattern.

The Observer pattern works like this:®> The AbstractSubject has information
that might be of interest to some clients, but it doesn’t know who those clients are.
The clients know where the server is and can connect to it when needed. So far,
this is nothing more than the classic Client-Server model. What is special about the
Observer pattern is that the server knows how to maintain a list of clients and provides
a subscription service so that interested clients can sign up when they want data and

> Ibid.
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disconnect when they are no longer interested. When the client subscribes, they are
typically immediately sent the data, and subsequently sent updates when some update
criterion is met. The most common update criterion is when the data changes, but
other update criteria might be used, such as sending the data periodically.

As with all patterns, the Observer pattern has two kinds of classes in it. The
first are “provided classes.” These are classes that come along with the pattern that
serve as glue to hold the pattern together and facilitate its execution. In Figure 6.3,
NotificationHandle, AbstractSubject, and AbstractObserver are the “glue classes.”
The second kind are the formal parameters of the pattern, places where you hook
in your classes from your analysis models. The ConcreteSubject and ConcreteOb-
server represent the classes in your analysis model. Thus, to apply the pattern we will
add the glue classes and replace the formal parameter classes with the actual classes

from the analysis model. The result of this design pattern application is shown in
Figure 6.4.

Observer
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. ! e
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* 1
B updateAddr.Addr itsNotifcationHandle .
- A & update()-void
agetUpdateAddr(}:vo_ld Ssubscribe():void "~ itsSubject
HsetUpdateAddr():void Sunsubscribe()void ;
Snotify():void
B " _.-~ | HEgetState():void
abstract ("pure =— =7 EsetState():void ConcreteObserver

S j

ConcreteSubject

/
/
N & y
B
Pattern formal
parameter - objects
from the analysis model

Figure 6.3 Observer design pattern

Figure 6.4 has the elements from the original collaboration, the glue classes,
and the classes that replace the formal parameters of the pattern. Generalization is
a primary, although not the only, way in which design patterns are applied to the
collaboration. Also note that the original collaboration has been refactored slightly;



Architectural Design 147

specifically, the original relations between the TrainSpeed, TextView, and SpeedCon-

troller class are removed and essentially replaced by a one-way relation between the
AbstractSubject and the AbstractObserver.
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(post-design pattern)
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*

AbstractSubject

1 | Ssubscribe()void

H updateAddr:Addr
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Figure 6.4 Design collaboration

It is not the purpose of this book to replicate all the information in other books

on patterns.® It is in the province of this book to give you experience in their appli-

cation, however. To this end, we will take the work we have already done, identify

some architectural design criteria, and apply design patterns to it to construct an

architectural design model. We will focus here on only three of the architectural

views—concurrency/resource, distribution, and safety/reliability.

Problem 6.1 Concurrency and Resource Architecture

The focus of the concurrency and resource management architecture is:

* Identify tasks

¢ Identify resources

* Map semantic objects into task threads

It is important to remember that this is meant to be a workbook used in conjunction with other

books, such as the author’s Real- Time UML, Third Edition. Thus, we will select patterns to use in the
exercises but not fully describe the formidable array of patterns that could have been applied.
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object is a structured composite object that owns its own thread. It may contain
internal parts (object roles typed by classes) that execute nominally in the context
of the «active» object’s thread. The UML itself doesn't distinguish between heavy-
weight and lightweight threads since they differ in implementation detail but not
really in fundamental semantics. The Harmony process identifies the concurrency

Identify synchronization points

Specify synchronization algorithms

Specify how resources will be shared among threads

In the UML, «active» objects are used to model concurrency units.” An «active»

architecture using the workflow in Figure 6.5.
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Figure 6.5 Constructing the concurrency architecture

7

The notation for an «active» class is a class drawn with a heavy border (UML 1.x) or with a double-

line border on its left and right edges (UML 2.0).
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The four major activities done in the specification of the concurrency and resource
architecture are 1) specify the tasks, 2) specify the resources and how they are to be
shared, 3) specify the scheduling patterns to be used, and 4) specify how the tasks

will synchronize when necessary.

The first job is to find a good set of tasks. In the Harmony process, we do this

by using one or more task-identification strategies.

Table 6.1 Task-identification strategies

Strategy Description Pros Cons
Single event | Use a single event type | Very simple threading | Doesn’t scale to many
groups | per task model events well; suboptimal
performance

Interrupt | Use a single event type | Simple to implement | Doesn’t scale well to
Handler | to raise an interrupt for handling a small many events; inter-

set of incoming event | rupt handlers typically
types; highly efficient | must be very short and
in terms of handling atomic; possible to drop
urgent events quickly | events; difficult to share
data with other tasks

Event Group all events from a | Simple threading Doesn’t scale to many
Source single source so as to be | model event sources well; sub-
handled by one task optimal performance
Related | Group all processing Useful for “back- Same as Event Source
Information | of information (usu- ground” tasks that
ally around a resource) | perform low-urgency
together in a task processing
Independent | Identify different Leads to simple tasking | May result in too
Processing | sequences of actions as | model many or too few
threads when there is no threads for optimality;
dependency between the doesn’t address shar-
difference sequences ing of resources or task
synchronization
Interface | A kind of event source | Useful for handling Same as Event Source
Device device (e.g., bus)

interfaces
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Table 6.1 Task-identification strategies (continued)

Strategy Description Pros Cons

Recurrence | Group together events | Best for schedulabil- More complex
Properties | of similar recurrence ity; can lead to optimal

properties such as scheduling in terms

period, minimum inter- | of timely response to

arrival time, or deadline |events

Safety Group special safety Good way to add Suboptimal

Assurance | and reliability assurance |on safety and reli- performance

behaviors together (e.g.,
watchdogs)

ability processing for
safety-critical and high-

reliability systems

It is common to mix multiple strategies in the same system. For example, you have
use multitasking preemption based on recurrence properties as the primary schedul-
ing strategy and also have interrupt handling for highly urgent event handling.

Another important activity is to identify the shared resources and their meth-
ods of access. A shared resource is an entity, normally modeled as a class or object
(depending on whether you're referring to a resource type or resource instance) that
provides a quantifiably finite set of services or data. Normally resources must be
accessed by one client at a time, through a process known as serialization. This can
be done with a variety of different resource-sharing patterns® such as the Guarded
Call (i.e., using a mutex semaphore), Critical Section (i.e., turning task switching
off during the use of the resource), or Message Queuing (i.e., queuing asynchronous
access requests and handling them on a first-come—first-served basis).

Another issue for the concurrency architecture is to identify the scheduling
patterns used. The scheduling pattern determines which tasks will run under what
circumstances. The simplest is the Cyclic Executive pattern, in which each task
runs in a sequence; once the task set has run through, the scheduler starts back with
the first task. While this approach has the benefit of simplicity, it is demonstrably
suboptimal in terms of responsiveness to incoming events; further, it is difficult to
share data or synchronize with other tasks, and each task must complete before the
next task can begin. A round robin pattern scheduler is only a bit more complex.

In a round robin scheduler, the tasks need not complete, but must reach points at

8 For a detailed description of these patterns, see the author’s Real-Time Design Patterns: Robust Scal-

able Architectures for Real-Time Systems, Addison-Wesley 2002, Chapters 5-7.
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which they voluntarily relinquish control back to the scheduler to let other tasks
run. A time multiplexed scheduler (also known as “Timed Round Robin” or TDMA
scheduler) uses a time-based interrupt to stop execution of a task and begin the next
in the sequence. These last three scheduling patterns are all “fairness doctrine” pat-
terns, meaning that every task gets an equal chance to run and so they don’t contain
any of the notions of priority, urgency, or criticality.

There are a number of patterns that support these notions—notably the Static
Priority Pattern and the Dynamic Priority Pattern. In these patterns, each task is
assigned a numeric value, called priority, that determines when the task will run.
When a set of tasks is ready to run, the task with the highest priority runs. When
it completes, the waiting task with the next highest priority runs. If, while a task
is running, a higher priority task becomes ready to run, then the scheduler stops
it and places it back on the ready queue, and the higher priority task runs instead.
The Static Priority pattern assigns the priority at design time. A common special-
ized form of the Static Priority pattern is rate monotonic scheduling (RMS). In
RMS, the following assumptions are made: 1) all tasks are periodic, 2) the deadline
is assumed to occur at the end of the period, and 3) all tasks can be interrupted at
any point. RMS scheduling then assigns the priority of the task on the basis of the
period. The shorter the period, the higher the priority. RMS scheduling is both
optimal and stable. By optimal, we mean that if the task set is schedulable by any
pattern, then RMS can schedule it as well (that is, you can’t do better). It is stable
in the sense that, in an overload situation where task deadlines cannot be met, it is
possible to predict which tasks will fail—the lower priority ones.

Dynamic scheduling patterns assign the task priority at run-time based on some
run-time criteria. The most common strategy is called Earliest Deadline First (EDF).
EDF has the same basic assumptions as RMS but assigns priority on the basis dead-
line—the task with the nearest deadline has the highest priority. Thus, when a task
becomes ready to run, its next deadline is calculated and then its priority is assigned
on the basis of which tasks have nearer or farther deadlines. EDF is optimal but not
stable; because deadlines are computed during run-time, it is not possible to predict
which tasks will fail in an overload situation.

All these scheduling approaches assume task independence but have been
extended to support the inevitable cases in which tasks are not, in fact, truly inde-
pendent. In actual systems, most tasks must synchronize their execution at explicit

synchronization points or share data and services from resources.

The last major concern in the concurrency architecture is to identify the task
synchronization points and decide how to perform the synchronization. It’s important
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to understand the basic independence-of-execution semantics of task execution.
Each task can be thought of as a fully ordered series of actions. The whole point of
using tasks is that the relative order of execution of the action sequences in the tasks
is unimportant to the correct execution of the other tasks. The other tasks neither
know, nor care, where some other task is in its sequence of actions. If the actions
between two different tasks are tightly coupled, then they should not be modeled
as independent tasks in the first place.

That having been said, in most systems, tasks do depend on the order of execu-
tion of other tasks but usually only in limited and well-defined ways. Consider
Figure 6.6. In this figure we use an activity diagram to show the overall process for
making coffee. Between the fork and the join, we show two task threads, which are
independent. One of these is focused on boiling the water while the other is focused
on preparing the coffee serving. However, both these tasks must be at the proper
synchronization point (i.e., the water is hot and the coffee serving is prepared) before
processing (i.e., mixing the coffee into the water) can proceed. Whether the water
is heated before the coffee is removed from the freezer or not doesn’t matter—the

order of execution of those actions is independent. However, there is an explicit
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Figure 6.6 Making coffee
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synchronization point at which processing cannot proceed unless both tasks are at

a certain point in their execution sequences.

Let us now consider modeling the concurrency architecture of a simple example.
Figure 6.7 is a simple control system. At the top left of the figure, the environmen-
tal data is acquired, filtered and averaged from four different sensors. The data is
acquired under the control of the SensorManager at a rate of 10 Hz (i.e., 100-ms
rate) and this is used to update the AverageSensedData. The Controller oversees
the entire system and every 30 seconds it may choose to adjust the control points
for the high-speed closed loop controller of the actuators based upon the averaged
data. The high-speed closed loop control updates the output at 100 Hz (i.e., 10-ms
rate) and does high-speed control to reduce the error between the monitored average
values and the control set points. So how do we turn the analysis model in Figure
6.7 into a design model with concurrency?

SensorManager

HcomputeAverageValue()int
EgetAverageVa\ue():lnt

& Filter

Sensor

T 1 | 2highPassFilterFrecint
Hvaluecint = HlowPassFilterFrecint !

filter(s:int)int AverageSensedData

ElgetValue():int
= averageValue:int

Controller

EgetAverageValue()int <_.1 H tempSetPoint:int
'l setAverageValue(vint):void

SupdateControlPonts():void

Fan I
ClosedLoopController

1

. - [l
HsetairFlow(fintyint) < = tempControlPoint:int
= flawControlPoint:int

Heater H airflowControlPaint:int

EsetTemp(tint)int) 5

HcontrolDevices()void

Valve E—

= setFlow(fint):int)

Figure 6.7 Control system

In this example, we'll use the recurrence properties to determine the task set.
Actions occur at three different periods: 10 updates/sec for data acquisition, 100
updates/sec for closed loop control, and one update every 30 seconds for the update
of the set points. Each of these processing sets will become an «active» object man-
aging its own task. The AverageSensedData class is a resource shared among the
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task threads. For the resource sharing policy, we'll use the Guarded Call pattern to

enforce serialization of the access to the data.’

To make this into a task diagram,'® these classes must be made parts of the
relevant «active» objects.!' Lastly, add ports to connect the objects across the thread

boundaries.

An idiosyncrasy of the UML is that you cannot connect ports of classes with
associations; you can only connect ports on instances with links. Thus, in the result-
ing task diagram of Figure 6.8, we've made the tasks instances and connected those
instances with links to show the connections. We've also added the period and prior-
ity in constraints anchored to the appropriate «active» objects.'? To be complete, we

also added the required interface (iAveragedData) to specify the ports.'
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Figure 6.8 Concurrency design model

In Rhapsody, this is very straightforward. Simply set the concurrency property of the relevant opera-
tions from “Sequential” to “Guarded” and Rhapsody will automatically create a semaphore to man-
age the serialization of access to the methods.

A task diagram is just a usage of a class or object diagram—i.e., its mission is to depict the concur-
rency architecture.

In Rhapsody this can be done by first showing the structured view of the active class, then dragging
the analysis class inside. Once there, right-click on the class you want to make a part and select “Make
an Object.” Make the encapsulating class active by setting its concurrency property to “active.”

In this case, you will note that the larger the value of the priority property, the lower its priority.
This is operating-system specific.

The observant reader may notice that we use ports only in a very limited way in the example. Ports
are a design pattern and have costs as well as benefits. We tend to use them only between architec-
tural objects that need to delegate to internal parts.
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Concurrency architecture can be highly complex and the interested reader is

referred elsewhere for more details on the ins and outs.'* For the purpose of this text,

we will select the strategies for you to enter into your design. Nevertheless, it is useful to

have a quick glossary of terms important in the concurrency and resource model:

Table 6.2 Some concurrency definitions

Term Definition
Arrival | The recurrence property that specifies when events of a given type
pattern | occur: e.g., periodic or aperiodic. Arrival patterns are detailed with
quantitative information such as the period, jitter, minimum inter-
arrival time, and/or average interarrival time
Blocking | The amount of time a high-priority task is prevented from execu-
time tion because a lower-priority task owns a needed resource
Criticality | The importance of the completion of an action
Deadline |In hard real-time systems, the time after an initiating event that the
action must be completed to ensure correct system behavior
Deadlock | A condition in which a system is waiting for a condition that can
never, in principle, occur. Can only occur when four conditions are
met: 1) tasks can be preempted, 2) resources can be locked while
waiting for others, 3) tasks can suspend when owning resources,
and 4) a circular waiting condition exists
Execution | The amount of time required to execute the response to an initiat-
time ing event
Hard | A real-time system characterized by the absolute need to adhere to
real-time |a set of deadlines
Interarrival | The time between the arrival of events of the same type; for periodic
time | tasks this is a constant, but for aperiodic events it can vary widely
Jitter | The variation in the actual arrival time of periodic events
Period | The length of time between the arrival of periodic events
Priority | In a multitasking preemptive system, the priority is a numeric
value that is used to select which task, from a set of tasks currently
ready to run, will run preferentially
Race | A condition in which the computational result depends on a
condition |sequence of actions, but whose order is inherently unknown or

unknowable

Y See, for example, Real-Time UML: Advances in the UML for Real-Time Systems, Addison-Wesley,
2004 or Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Pat-
terns, Addison-Wesley, 1999, both by the author.
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Table 6.2 Some concurrency definitions (continued)

Term Definition

Real-time | A system in which the specification of correctness includes a timeli-
ness measure

Resource | An element which provides information or services of a quantifi-
ably finite nature—e.g., a set of services which must be invoked
atomically or provides a set of objects from a finite pool

Schedula- | The mathematically demonstrated ability for a set of tasks in a
bility | hard real-time system to always meet their deadlines

Synchro- | The means by which tasks will synchronize their execution at spe-
nization | cific, defined points
pattern

Timeliness | The ability of a task to always meet its deadlines

Urgency | The immediacy of the need to handle an event or to complete an
action

Now on to the main event ...

For the Roadrunner Traffic Light Control System, we begin this process with
the collaborations constructed from the object analysis model. The collaboration

we will work with for this exercise is shown in Figure 6.9.

For this problem, take the collaboration shown in Figure 6.9 and make this
into a design-level collaboration with concurrency. Remember to apply the task
identification strategies (that's why they’re there!); walk though the concurrency
architecture workflow and make sure you either do all the steps or have convinced
yourself that you don’t need to. Decide what scheduling pattern youd like to use,
whether it’s cyclic executive, static priority, or whatever. Normally, the scheduling
pattern is not explicitly shown in the task diagram because it is relegated to the
underlying computing-platform operating system.

For the Coyote UAV, we will continue to focus on image acquisition. The col-

laboration to add concurrency is shown in Figure 6.10.

Apply the task-identification strategies and the concurrency architecture work-
flow to create a task diagram for this collaboration. Also, decide on a scheduling
strategy.

For both solutions, justify your selection of a scheduling pattern. How would
the behavior be different if a different strategy was selected? What would the pros
and cons of the various strategies be?
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Problem 6.2 Distribution Architecture

The distribution architecture focuses on how objects are allocated to different
processors and the means by which they collaborate. These means include not only
the underlying communications protocols but also the policies and patterns that

govern their use.

Distribution patterns come in two basic flavors: asymmetric and symmetric.
Asymmetric architectures are distinguished in that the allocation of objects to
processing nodes is done at design time. This enables a number of simplifying
assumptions to be made for the collaboration, since client objects can reliably know
where their servers are and how to talk with them. Symmetric architectures are
characterized by run-time allocation of objects to processor nodes. This organiza-
tion is more flexible than asymmetric but comes at a cost of increased complexity,
required infrastructure support, and possibly run-time overhead. Another benefit of
symmetric architectures can be improved reliability, because objects can be relocated

when a processor node fails.

Asymmetric architectures can be supported by simple infrastructures such as
networks (e.g., Ethernet), busses (e.g., CAN or 1553 bus), serial links (e.g., USB or
RS-232), or shared memory (e.g., dual-ported RAM). In all these cases, it is most
common to have a general-purpose communication protocol (i.e., one that is not
application-specific) and use this protocol to exchange application data and request
services. A communication protocol is generally a logically multitiered structure in
which low-level bit or byte exchange facilitates the logical exchange of application
messages at a higher level of abstraction in the protocol. For example, Ethernet can
provide the underlying data-link and transport facilities for TCP datagrams, but a
system can implement the higher-level exchange mechanism of Remote Procedure
Calls (RPCs) using these lower-level facilities. The exchange of messages between
remote applications takes place at the application layer in the protocol stack, but
this is ultimately realized by lower-level mechanisms in the transport, data link, or

physical protocol layers.

It is important, for good system design, to isolate the protocol details away from
the application semantics as much as possible. This not only simplifies the applica-
tion but also allows the application to run more easily over different communication
protocols. Distribution patterns appear at or just above the application layer in the
protocol stack. As with all patterns, distribution patterns optimize some aspects of
the system design at the expense of others.
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By far, asymmetric architectures are more usual in embedded systems. They are
simpler and tend to be more time-efficient than symmetric architectures, which fits
in well with the highly constrained environments in which many embedded systems
must reside. However, the simple approaches often don’t scale well to larger-scale
systems. The most common infrastructure for use in symmetric systems is to use
an ORB (object request broker) architecture pattern, and the most common ORB
standard is CORBA (common object request broker architecture).”

The Roadrunner Traffic Light Control System is a moderately distributed system.
Sensors and actuators are scattered about the intersection and may have small proces-
sors that allow them to communicate with the intersection controller. Certainly a
connection must exist between the front panel display and the intersection control-
ler as well. The system must also connect to the remote service and management
system via a wired Ethernet connection and also must support simple communi-
cation with high-priority and emergency vehicles. To construct the distribution
model for the Roadrunner Traffic Light Control System, take the collaboration'
from the object-analysis model and add objects to facilitate communications, such
as protocol stacks, message types, and distribution pattern-specific classes and add
them to the collaboration.

For this problem, make the following assumptions:
o The distribution architecture is asymmetric

e Each light assembly and sensor assembly will be connected to the Intersection
controller and each other via a serial multidrop RS-422 link. Simple messages
shall be exchanged using synchronous RPCs (remote procedure calls) over the
serial link, including:

— setLightMode(ModelD:int)

— herezaEvent(eventSource:int; ev:EventType) // for collaboration among lights
and sensors

— detectEvent(sourcel D:int)

e The multidrop RS-422 link is managed as a token ring, each node getting the
master token for a brief period (not to exceed 20ms) to send messages. This
ensures that the entire ring is cycled in no less than 1/5 second.

5 See Pattern-Oriented Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects
by Doug Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, John Wiley and Sons,
2000, for a detailed description of a number of different CORBA-related patterns.

You can omit the threads done for the concurrency model. They'll still be there in the system, but
now we're focusing on the communication aspects, not the concurrency aspects, so we will omit the
latter. This is in keeping with the “single importance concept per diagram” guideline.
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e The connection to the Front Panel Display shall be an Ethernet link.

e The connection to the remote service and management system shall be over an

Ethernet link

e The above-surface vehicle detectors support both wired (multidrop RS-422
above) and wireless communications. The wireless protocol shall be the same as
used for the transceiver used to detect high-priority and emergency vehicles.

e The transceiver shall support a simple, custom protocol that is focused and
directional, allowing the reception (only) of the following messages

— HighPriorityVehicleApproaching
— EmergencyVehicleApproaching

e There shall be four IR transceivers (one for each direction) that transmit the
emergency and priority vehicle messages to the Intersection Controller.

For the Coyote UAV, we'll focus on adding the distribution architecture to the
Reconnaissance Management subsystem but a brief description of the overall aircraft
communication architecture is appropriate. The aircraft has two telemetry links to
the ground using different frequencies. The low-speed datalink is encrypted and
secure with a bandwidth of 100 bits per second (bit/s). The high-speed datalink is
unencrypted and is used for high-bandwidth video and image streaming. It must
support 640 x 480 resolution images at 30 fps. If uncompressed, that means that it
must support a bandwidth of 640 x 480 x 10 x 30 = 92,160,000 bit/s. However,
lossless compression of at least 30% on average is possible, leading to a required
minimum bandwidth of 64,512,000 bit/s. Since we need some margin for error,
a 100 Mbit/s should be adequate to meet the needs. That means that the internal
network must be able to handle this bandwidth in addition to other data neces-
sary to fly and maneuver the aircraft; a minimum of 200 Mbit/s of real bandwidth
should be more than adequate. If we use a CDMA (collision detect multiple access)
protocol, such as Ethernet, then such a network saturates at about 30% of avail-
able bandwidth. Thus, we need a 1-Gbit/s Ethernet internal bus to ensure we have
no significant delay in the delivery of the data due to collisions on the network if
everything operates on the same network."”

How best to model this? As always, there are multiple approaches to solving the
problem. The simplest, with Rhapsody;, is to simply stereotype the interfaces that specify

17 1f the 1-Gbit/s network is unpalatable, then you might decide to either run multiple networks (one
for command and control and another for high-speed data), or reduce the fidelity of the video.
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the contracts on the ports «CORBAlnterface». Rhapsody then “CORBA-enables” these
ports so that it generates all the IDL for the proxies that marshal and unmarshal the
services invoked across those ports. But what if we don’t want to use CORBA?

In some sense the most ideal solution would be to create a class called TCP-
PortClass, that has the structure, relations (to the protocol stack, for example), and
behavior to marshal and unmarshal service requests and responses and then send
them via datagrams, with sessions and sockets, as appropriate. Then use instances
of this class to replace the existing ports on the subsystem and other structured
classes. This, however, is not easily supported in modeling tools since in most tools
ports are not easily extensible, requiring you to write significant amounts of code
to implement the solution.

Another, less satisfactory solution from the modeling point of view, is to refac-
tor the architecture, deleting the old “semantic” ports that are specified in terms of
application data and services, and replace them with TCP/IP ports that are speci-
fied in terms of their ability to receive (or require) requests for sessions, sockets,
and that can send and receive datagrams. This approach is less satisfactory from a
model standpoint because it disrupts the continuity from the original architecture
model—which is based on data and services in the system—and modifies it to be
based on the design infrastructure rather than the application semantics.

In order to make the best choice, we need to ask ourselves "What do we want

from our solution?” An ideal solution should:
* Provide the connections to the other systems over the desired network

* Require minimal modification (in the best case, no modification) to the existing

collaborations and to the existing architecture

* Be easy to reapply to different distribution architectures, networks, and

datalinks

One more approach, and the one recommended here, is to create proxies using a
variation of the proxy pattern called the port proxy pattern. A proxy is a “stand-in”
for another element and in this case understands how to marshal and unmarshal
the service requests and responses into TCP/IP datagrams, set up connections and
sessions, and so on. The port proxy pattern is specifically designed to address the
issue of connections across ports that are to be implemented using a networking
infrastructure.

The port proxy pattern problem is shown in Figure 6.11.
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Port Proxy Pattern Problem Context
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provide or require the necessary interfaces?

Figure 6.11 Port proxy problem

The solution—adding in proxies to manage the communication over the net-
working infrastructure—is shown in Figure 6.12. It is a “simple” matter of creating
proxies that manage the networking communications. These proxies support the
required application semantic interfaces and then create the necessary network data
structures (such as datagrams) and execute the necessary network behaviors (such as
creating sessions and sending and receiving network packets) to achieve the com-
munication goals. The primary advantage of this pattern is that the original objects
(in this case, the subsystems) don’t need to change at all to support the network
infrastructure. The change is isolated to the links among the objects; now they are
connected via proxies instead of directly. The original architecture still executes
because the interfaces haven't changed and the new architecture with the proxies

added works as well.

Port Proxy Pattern Solution Structure
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Figure 6.12 Port proxy pattern structure
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Your task for the CUAV is to apply this port proxy pattern to the Reconnaissance
Management, Airborne Datalink, Navigation, Targeting subsystems and payloads.
Draw the related subsystems and connect them via proxies.

Problem 6.3 Safety and Reliability Architecture

The safety and reliability view specifies how the architecture identifies, isolates, and
corrects faults at run-time. At the architectural level, this boils down to ways in which
redundancy is defined and used to achieve the system safety and reliability goals.

Reliability is a measure of the “up-time” or “availability” of a system; specifically, it is
the probability that a computation will successfully complete before the system fails. It
is normally estimated with mean time between failure, or MTBE MTBF is a statistical
estimate of the probability of failure, and applies to stochastic failure modes.

Reducing the system down time increases reliability by improving the MTBE
Redundancy is one design approach that increases availability because, if one com-
ponent fails, another takes its place. Of course, redundancy only improves reliability
when the failures of the redundant components are independent.'® The situation
in which a single failure can bring down multiple components is called a common
mode failure. One example of a common-mode failure is running software for both
the primary and secondary processing on the same CPU. Should the processor fail,
then both components will fail. In reliability analysis, great care must be taken to
avoid common mode failures or to provide additional redundancy in the event of

an element, common to all redundant components, failing.

The reliability of a component does not depend upon what happens after the
system fails. That is, regardless of what happens after the failure, the reliability of
the system remains the same. Clearly the primary concern relative to the reliability
of a system is the availability of its functions to the user.

Safety is very different from reliability, but a great deal of analysis affects both
safety and reliability. A safe system is one that does not incur too much risk of loss,
either to persons or equipment. A hazard is an undesirable event or condition that
can occur during system operation. Risk is a quantitative measure of how dangerous
a system is and is usually specified as:

Risk = Hazard,

severity

*
Hazardyy, 00

'8 Strict independence isn’t required to have a beneficial effect. Weakly correlated failure modes still

offer improved tolerance to faults over tightly correlated failure modes.
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The failure of a jet engine is unlikely, but the consequences can be very high.
Opverall, the risk of flying in a plane is tolerable because, even though it is unlikely
that you would survive a crash from 30,000 feet, such an incident is an extremely
unlikely. At the other end of the spectrum, there are events that are common, but
are of lesser concern. A battery-operated radio has a hazard of electric shock but the
risk is acceptable because even though the likelihood of the hazard manifestation is
relatively high, its severity is low."

Faults come in two flavors. Errors are systematic faults introduced in analysis,
design, implementation, or deployment. By “systematic,” we mean that the error is
always present, even though it may not be always be manifest. In contrast, failures
are random faults that occur when something breaks. Hardware exhibits both errors
and failures but software exhibits only errors. The distinction between error and
failure is important because different design patterns optimize the system against

these concerns differently.

The key to managing both safety and reliability is redundancy. Redundancy
improves reliability because it allows the system to continue to work in the presence of
faults. Simply, the redundant system elements can take over the functionality of broken
ones and continue to provide system functionality. For improving safety, additional
elements are needed to monitor the system to ensure that it is operating properly and
possibly other elements are needed to either shut down the system in a safe way or
take over the required functionality. The goal of redundancy used for safety is different
than for reliability. The concern is not about continuing to provide functionality, but

instead to ensure that there is no loss (to either persons or equipment).

The example I like to use to demonstrate the difference is the handgun versus my
ancient Plymouth station wagon. The handgun is a highly reliable piece of equip-
ment—most of them fire when dirty or even under water. It is, however, patently
not very safe since, even in the absence of a fault, you can (and people do) shoot
yourself in the foot. On the other hand, my enormous 1972-vintage station wagon
(affectionately referred to as “The Hulk”) is the safest automobile on the planet. It
has a fail-safe state” (“OFF”) and it spends all of its time in that state. So while the
vehicle is very safe, it is not at all reliable.

1" For more on safety, see Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frame-
works, and Patterns, Addison-Wesley, 1999 by Bruce Powel Douglass or Safety Critical Computer
Systems by Neil Storey, Addison-Wesley, 1996. For a general overview of the issues of safety in
software-intensive systems, see Safeware: System Safety and Computers by Nancy Leveson, Addison-
Wesley, 1995.

2 A fail-safe state is a condition (state) of a system known to be always safe, i.e., free from loss.
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As with the other architectural dimensions, safety and reliability are achieved
through the application of architectural design patterns.”’ All design patterns have
costs and benefits, and selecting good safety patterns requires balancing the design

concerns, such as:

* Development cost

* Recurring (manufacturing) cost

* Level of safety needed

* Level of reliability needed

* Coverage of systematic faults (errors)

* Coverage of random faults (failures)

e Complexity

¢ Resource demand

* Ease of certification against relevant standards

In general, safety and reliability patterns can be categorized into either homo-
geneous or heterogeneous patterns. The former creates exact replicas of the
architectural elements to provide redundant processing, and adds glue logic to deter-
mine when and under what circumstances the replicas run. The latter patterns use
different implementations, designs, or approaches to provide redundant processing.
These systems can be further subdivided into lightweight or heavyweight patterns.
Lightweight patterns use fewer resources but may not be able to provide the full
functionality or fidelity of the primary system elements. Heavyweight redundancy
replicates the full functionality but at a greater cost.

Assessing the adequacy of the design solution is done with safety analysis (such
as Fault Tree Analysis [FTA?]) and/or reliability analysis (such as Failure Mode and
Effect Analysis [FMEA®]). FTA uses logical operators to connection conditions
(some of which may be undesirable) with events, such as failures. The notational
elements of the FTA are shown in Figure 6.13.

21 For details of safety-related patterns, see the author’s Real-Time Design Patterns: Robust Scalable

Architectures for Real-Time Systems, Addison-Wesley, 2002, Chapter 9.

22 An excellent resource is The Fault Tree Handbook, NUREG 0492 (Nuclear Regulatory Commission,
1981), available at Attp:/fwww.nre.govireading-rm/doc-collections/muregs/stafflsr0492/.

3 See http:/fwwuw.fmeainfocentre.com/ for some FMEA resources.
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An event that results from a
combination of events through
a logic gate

A basic fault event that requires
no further development

An "undeveloped fault" event,
not elaborated because the
event is trivial or more
decomposition is not necessary

An event that is expected to
occur normally

NOT Gate

oD O 0 |

A condition that must be
present to produce the
output of a gate

Transfer

AND gate

NAND Gate

OR Gate

NOR Gate

XOR Gate

DDDIDD > O

Figure 6.13 FTA notational elements

The purpose is to identify the conditions and events that must occur for hazard-
ous conditions to arise. The logical operators are AND, NAND (Not AND), OR,
NOR (Not OR), XOR, and NOT. The circle is a basic fault and the rectangle is an
“intermediate fault”—that is, a result of a logic operator working on more primitive

faults. A typical if simplified FTA is shown in Figure 6.14. The system depicted is a
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cardiac pacemaker, and the hazardous condition depicted is Pacing Too Slowly. Once
such an analysis has been performed, safety or control measures are added that must
be ANDed with the other conditions to allow the hazardous condition to arise. In
the example FTA shown, for a Timebase Fault to arise, both the CPU crystal must
fail AND the added watchdog safety measure must fail. I typically do a separate FTA
for each identified hazardous condition when doing a system safety analysis.

The result of this analysis usually culminates with a hazard analysis that specifies
each fault with a description, severity, likelihood, risk, fault tolerance time, control
measure (design approach to handle the fault), fault detection time, and fault expo-
sure time. I represent this information as a spreadsheet, such as that shown in Figure
6.15, which shows some hazards for a patient ventilator. The actual performance of
safety analysis is beyond the scope of this book, but interested readers are referred

to the cited references for more information.

Safety and reliability analyses are not a part of the UML, but are used in con-
junction with the UML to assess the safety and reliability of the systems specified
in the UML.

Most of the commonly used safety and reliability patterns are based on the channel
pattern. This pattern is shown in Figure 6.16. A channel is a kind of subsystem that
performs “end-to-end” functionality; that is, it takes data from physical sensors and
performs a series of data transformational steps, culminating with output actuator
control. The advantage of this organization is that it is easy (although not always
inexpensive!) to replicate the entire channel so that if any point in the channel fails,
another channel can take over the required functionality.

Figure 6.17 shows an example simplified from a medical delivery system. The
channel shown delivers oxygen. The actors (shown as objects with the «actorInstance»
stereotype) connect to the channels. Note that different O2 sensors and gas mixers
connect to the different channels, as required to avoid common mode failures. Inside
the channels, the acquired data goes through a series of transformations, including
a control loop, until the appropriate settings for the gas mixer can be computed
and then sent to the gas mixer actor. Additionally, there is a monitor object that
compares the output of the channel with the input (and, presumably, the desired
control settings) and can switch over to the other channel if the first fails.

This pattern is single-point failure safe. If any element in the first channel fails
(including the sensor or gas mixer), the monitor detects it and switches over to the other
channel. If the monitor fails and switches to the other channel inappropriately, then
the other channel still works properly (since in single-point failure safety analysis, we
assume only a single fault), and the proper amount of oxygen will still be delivered.



Hazard Analysis

How to use this spreadsheet
The hazard analysis spreadsheet computes risk = severity * likelihood, where severity is a ranking of 1 (very low) to 10 (very

high).

Note that various safety standards may use a different range of severity. Likelihood is the probability of occurrence of the haz-
ard in the life expectancy of the product (0.0 to 1.0). Risk is computed from these values.
Exposure time is computed as the sum of the Detection Time + Action Time. For a safe system this value must be less than the
Tolerance time.

Is Safe is computed as = Exposure Time <= Tolerance Time.
Note that the spreadsheet assumes that the time units are the same for an entire row.

Hazard Fault Severity Likelihood | Computed | Time | Tolerance | Detection Control Measure Control Exposure Is
(1 [low] - 10 (0.0 -1.0) Risk units Time Time Action Time Safe?
[high]) Time
Hypoventilation | Breathing tube 10 0.02 0.2 minutes 5 0.5 Blood oxygen 2 2.5 TRUE
disconnect sensor
Hypoventilation | Ventilator 10 0.02 0.2 minutes 5 0.5 Independent 2 2.5 TRUE
timer error pressure sensor with
alarming
Hypoventilation | Gas Supply 10 0.04 0.4 minutes 5 0.05 Ventilator incoming 2 2.05 TRUE
Failure gas pressure sensor
Hypoxia Gas mixer 10 0.06 0.6 minutes 5 0.05 Inspiratory limb 2 2.05 TRUE
failure 02 sensor
Hyperventilation | Ventilator 8 0.01 0.08 minutes 20 0.5 Blood oxygen 2 2.5 TRUE
timer error sensor
Overpressure Pump failure; 10 0.03 0.3 ms 200 10 Secondary pressure 5 15 TRUE
expiratory tube sensor with auto
blockage release valve

Figure 6.15 Hazard analysis

9 Joydey>) 89l
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Channel Architecture Pattern
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Figure 6.16 Channel architecture pattern

This pattern, using homogeneous redundancy, has the benefits of single-point
failure safety, low design cost, and it can continue to provide services safely in the
presence of a failure. However, it cannot handle errors (since any errors will appear
in both channels) and it has a high recurring cost. The first problem (handling
errors) can be mitigated by using heterogeneous (aka “diverse”) channels—using a
different design or design team—but with a higher design cost.
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Figure 6.17 Example of channel architecture pattern
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Another common pattern is the monitor-actuator pattern. This is a variant of
the channel pattern that has relatively low design and recurring costs but cannot
continue in the presence of faults; that is, it requires that the system have a fail-safe
state. The pattern structure is shown in Figure 6.18.

The monitor-actuator pattern works by having a separate monitor that monitors
the physical environment. If the actuation channel isnt having the desired effect or
the results are not within nominal operating conditions, then the monitor commands
the channel into its fail-safe state (usually off or manual control). If monitor has a
fault, then either it allows the actuation channel to continue (which, by single-point
failure safety rules is still operating properly) or it mistakenly reverts to the fail-safe
state. In all cases, if there are no common-mode faults, the system remains safe.
Note that to avoid common mode faults, the monitor must use a different sensor
than the actuation channel.

It should be noted that the monitor’s computation of “correct” may be complex.
There is normally some range variance for a variety of reasons, and often flow or dif-
fusion dynamics must be part of the computation. For example, in an oxygen-flow
system, the O2 flow at the point of measurement won’t change the same instant
the set point is changed. Partial differential equations can be used to estimate the
expected rate of change as a function of the volume of the breathing circuit, the
flow rates, predicted nonlaminar flow, diffusion, and O2 update (extraction) by
the patient.

Figure 6.19 shows a straightforward example of the monitor-actuator pattern,
applied to the same system as the previous pattern. In this case, a separate sensor,
perhaps connected at the terminal (patient) end of the inspiratory breathing tube,
monitors delivered oxygen flow. The monitor compares it to the desired flow from
the control panel (ultimately set by the physician). If it is not correct, then it shuts
down the delivery of O2 and alarms to the attending physician, who (as part of
the “safety loop”) then fixes the problem and restores the proper oxygen flow to
the patient.

The last safety and reliability pattern we’ll mention in this chapter is the single
channel protected pattern. This pattern offers both low design and recurring costs
but provides less coverage than some of the other patterns. It is similar to the moni-
tor actuator pattern in that it may only be used in safety-critical systems if there is
a fail-safe state.
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The structure of the pattern is shown in Figure 6.20. You can see clearly that it is

a variant of the channel pattern. It specializes that pattern by providing lightweight

in-line data validity checks. It can detect data corruption and some computational

error but, unlike the monitor-actuator pattern, does not compare the physical out-

put with the expected result. Internal data- and processing-specific safety checks

are typically things like:

Data corruption (feed-forward) checks

CRC

Parity check (weak)
Hamming codes
Redundant data check

Inverted redundant data check (e.g., store the date in a one’s complement
(bit inversion) form and when reading the data, invert the copy and compare
to the stored value).

Reasonableness checks

Range checks (e.g., patient weight should be in the range of 0-400 kg)
A priori rule checks, e.g.,

»  height should be a function of range of weight with a range around a
mean

= if patient type is neonate, then weight range is 0-15 kg
» if patient type is pediatric, then weight range is 10 kg—100 kg

Unit checks (e.g., kilograms, grams, pounds, when data may come from
sources with different units)

Backward derivation (feedback) checks

Run the computation backwards to compute the original value and compare

It is also common to run background tasks to detect stack overflow, memory

faults, and liveness (e.g., lack of deadlock). Such checks are commonly known as

“built-in tests.”

The channel provides a very low-cost but less-complete check. An example is

shown in Figure 6.21.
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Both the example systems in this book are safety-critical. The Roadrunner’s reason

for existence is to provide a safe way for traffic to flow at points that are inherently

dangerous (intersections). This traffic flow includes both vehicles and pedestrians.

The system works by basically making everyone take turns so that they proceed
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through the intersection only when it is safe to do so. There are faults that could
affect the safe fulfillment of this functionality, such as:

Both primary and secondary through traffic have GREEN lights

Pedestrian traffic has a WALK light at the same time that the orthogonal vehicle
traffic has a GREEN light

The turn lanes in SIM (simultaneous mode) are green at the same time the
through traffic in the same orientation has GREEN

The turn lanes in the SEQ (sequential mode) are green when the opposing traffic
has a green light

All lights are off

The same rules may be applied to yellow lights and flashing wait as well, since

traffic normally continues to flow under these conditions, at least for a while.

For the first part of this exercise:

Take the collaboration done previously (shown again as Figure 6.22) and do a
separate FTA on each of the fault situations below:

— Both primary and secondary through traffic have GREEN lights

— DPedestrian traffic has a WALK light at the same time that the orthogonal
vehicle traffic has a GREEN light

— All lights are off

From the result of this analysis, create a hazard analysis in which hazards and
faults are identified and control measures are added, including estimated fault

tolerance times

Determine how architectural redundancy should be added to make the system
single-point fault safe for the analyzed fault situations

Draw the safety architecture class or object diagram showing how the elements

collaborate to achieve the desired safety.

For the second part of this problem, let’s consider the CUAV safety requirements.

The major safety risks are:

Loss of the aircraft
Loss of life (friendly or noncombatant) due to crashing the aircraft

Loss of life (friendly or noncombatant) because of a misdirected missile (from
the CUAV itself) or remote fire based on data from this system (e.g., a tank
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Figure 6.22 Roadrunner collaboration

receiving information from the CUAV via the ground station), or not firing on

hostiles when appropriate. These hazards could arise from
— Data faults
» target misidentification (i.e., “false positive”)

» lack of (valid) target identification (i.e., “false negative”)

m loss or corruption of target information either in storage or transmission,

e.g.

incorrect target classification?® or Combat ID (CID)*
incorrect location or coordinates

loss of information about target

incorrect target kinematics (vector, flight path, etc.)

2 Target classification is in terms of the type of platform (e.g., tank, truck, aircraft, platoon, etc.),

class, unit, and/or nationality.
25

Neutral, or Unknown.

CID is the identification of the target friendliness, such as Friend, Assumed Friend, Hostile, Suspect,
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m incorrect target management (e.g., failure in sensor fusion)
— Missile faults

= missile flight control failure

= misfire of the missile

» firing a missile without proper authorization

= lost or corrupted commands or data during message transfer

The last of these is mitigated somewhat by including a mission ops person
(human) in the loop and not leaving the use of lethal force entire up to automated
decision processes. However, even the smartest mission ops person can be misled
by getting an incorrect Combat ID in the “fog of war.”

Since we've focused previously on developing the reconnaissance management
subsystem, involved in both target identification, tracking, and targeting, we’ll

continue in that vein.

* Create an FTA for the reconnaissance management subsystem that identifies the

safety hazards and risks associated with this subsystem, one per hazard.

* From the result of this analysis, create a hazard analysis in which hazards and
faults are identified and control measures are added, including estimated fault

tolerance times.

* Determine how architectural redundancy should be added to make the system
single-point fault safe for the analyzed fault situations.

* Draw the safety architecture class or object diagram for the subsystem showing
how the elements collaborate to achieve the desired safety.
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Looking Ahead

We've seen that architecture is all about taking an analysis model, or platform inde-
pendent model (PIM) and performing system-wide gross-level optimization. In the
Harmony process, there are at least five independent but interacting areas in which

these architectural design decisions are made:

* Subsystem and component architecture

* Concurrency and resource management architecture
* Distribution architecture

 Safety and reliability architecture

* Deployment architecture

* Security architecture (optional)

Architecture was categorized in this way because each of these areas has its own
rich set of independent design patterns and solutions. The overall architecture is the

sum of one or more patterns from each of these architectural areas of concern.

Design—including architectural design—is all about optimization. As such,
it is imperative to first identify the design criteria and then rank them in order of
criticality. This is because many of the design criteria (such as worst-case execution
time and memory utilization) are traded off against each other by the design pat-
terns. The ranking allows us to clearly identify and optimize the design criteria that
are most important to us.

Design is discussed in terms of patterns because patterns are a way of codifying
and reusing design solutions that apply to problems that reoccur in different con-
texts. Patterns, then, are generalized solutions of commonly occurring problems. In
this chapter, we've seen how to apply design patterns in these architectural areas of

concern, and just a few of the patterns that are available for use.

In the next chapter, we'll look at the next two levels down in design abstraction,
mechanistic and detailed design. Design solutions in the mechanistic level of abstrac-
tion have a more limited scope—a collaboration realizing a single use case. Although
not as “strategic” in its scope, mechanistic design is still critical for good real-time
and embedded systems development. Detailed design decisions optimize individual

classes at a time, and so are much smaller than even mechanistic design patterns.
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Mechanistic and Detailed Design

What you will learn:
+  What is "mechanistic design”?
- Optimizing analysis collaborations
- Optimizing interaction
- Optimizing reusability
- Optimizing safety and reliability
*  What is “detailed design"?
+ Optimizing classes and objects
- Optimizing for space complexity
- Optimizing for time complexity
- Optimizing state behavior
- Optimizing for reusability

Overview

In this chapter, we'll deal with the two remaining levels of design abstraction; mecha-
nistic and detailed design. The first thing to remember is that, while analysis is about
semantic correctness (hence construction of the “essential model”), design is all about
optimization of that analysis model against the various design criteria. Mechanistic
design takes an existing analysis-level collaboration (as discussed in Chapter 5) and,
based on the weighted set of design criteria, optimizes that collaboration by applying
appropriate design patterns.

Mechanistic design optimizes the model at the collaboration level. A collaboration

is a set of classes and objects that work together to realize a larger-scale behavior,

179
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such as the realization of a use case. Since a typical system has one to a few dozen
use cases (at the high level, at least), the scope of the design decisions made for
mechanistic design is an order of magnitude smaller than for architectural design.
If there are 25 use-case (“analysis-level”) collaborations, then mechanistic design
must be applied 25 times, once per use case. Depending on the specific needs of a
specific collaboration, it will use different design patterns because the context may
be different and because the design criteria are likely to be different as well.

Detailed design optimizes the system at an even lower level of abstraction. Detailed
design applies idioms to optimize individual class features.! The scope of detailed
design is about an order of magnitude smaller than mechanistic design. While this
sounds daunting because of the sheer number of classes in a typical sysytem, practice
has shown that most classes in a well-designed system are very straightforward and
require little, if any, optimization. There is usually a small set of the classes—typically
3% to 5%—that require special effort. It is for these “special needs” classes that we

devote most of our effort in detailed design.

Mechanistic Design

A collaboration is a set of classes and objects working together to realize a larger-scale
purpose. A collaboration is specified in terms of specific classes playing named roles
(called classifier roles) that interact to produce larger-scale behavior and functional-
ity. Solutions to design optimization problems can usually be generalized and reused
in different specific contexts. Such reusable design solutions are called design pat-
terns. The roles define, in an abstract sense, the formal parameters for the pattern.
When bound with actual parameters (the classes from your analysis collaboration),
the pattern is said to be instantiated. A mechanism? is a type of pattern that is
limited in scope to a few classes (i.e., it does not have architectural scope), but is
generally applicable in many circumstances. Thus. mechanistic design is the term
in the Harmony process for the application of mechanisms to produce design-level
collaborations. A brief overview of design patterns is given in the Overview section
of the previous chapter.

The Harmony design process is very pattern oriented. Figure 7.1 shows the
mechanistic design workflow for the Harmony process. To understand the workflow,
itis important to remember that the recommended lifecycle in the Harmony process

! A class feature is an internal element of a class, such as a method, attribute, port, or state.

2

See Booch, Grady, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language User’s
Guide, Reading, MA: Addison Wesley Longman, 1999.
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is spiral; the spiral lifecycle creates the end product as a series of progressively capable
versions, called iterative prototypes.’ Normally, only one or a small number of use
cases are realized in any given spiral. As more spirals are completed, the prototype
becomes increasingly complete and capable, until at last the project is complete and
the prototype is shipped to the customer.

In the object-analysis phase of the spiral (see Chapter 5), one analysis-level
collaboration is produced per use case, so that for any given spiral, only a small
number (typically 1-3) of collaborations are generated. In mechanistic design, each
of these analysis-level collaborations is converted into a design-level collaboration
by applying the workflow shown in Figure 7.1. As discussed in Chapter 2, these
spirals are completed frequently, with 4-6 weeks being a common timeframe for a
single spiral. In addition to generating new collaborations, existing collaborations
may be changed in small ways to account for the new functionality added in the
current spiral. This process is known as refactoring.

Just as with architectural design, it is important to explicitly specify the design
criteria so that appropriate design patterns may be selected. These criteria are ranked
in order of criticality. This ranking is important because many of the design criteria
will be in conflict with each other, and the proper application of design patterns
requires that you optimize the most important design criteria at the expense of the
least important.

Once the design criteria are identified and ranked, the mechanistic design pat-
tern literature can be searched for patterns that perform the desired optimization.
Unfortunately, most references on design patterns mention pattern pros and cons
only in passing as a secondary concern. In our view, the pros and cons are the pri-
mary selection criteria to identify appropriate design patterns. That is, we dont apply
patterns because they are “cool,” but because they achieve the desired optimizations

at an acceptable trade-off cost.

Once the design patterns are selected, they must be instantiated into the col-
laboration. This, as discussed in the previous chapter, is a matter of inserting the
classes from the pattern into the analysis collaboration, and connecting the analysis
classes to the pattern classes by either subclassing from or associating with the

pattern’s classes.

3 By prototype, we do not mean something hacked together to demonstrate some concept. This proto-
y g e P P

type contains production code, but may be incomplete.
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Figure 7.1 Harmony mechanistic design workflow

The classic reference on mechanistic design patterns is by Gamma, et. al.* It

classifies patterns into three categories:

*  Creational patterns
These patterns deal with the object instantiation process.

»  Structural patterns
These patterns deal with how objects are composed into larger structures.

*  Behavioral patterns
These patterns deal with algorithms and assignment of responsibilities among

sets of objects.

4 Gamma, Helm, Johnson, and Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.
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This is an excellent reference and highly recommended, even though the repre-
sentation of the patterns is not in the UML.

Delegation Pattern Strategy

Almost all patterns use either delegation or interface abstraction to achieve their goals.
Delegation strips out some functionality from one class and places it in another.
This allows the delegated class to focus on a more specific responsibility and often
makes it more reusable in different contexts. The container-iterator pattern works in
this way. The “whole” class owns a set of parts and must manage their containment
(add, remove, find, sort, etc.). By abstracting the containment responsibility into a
separate container class, the “whole” is simplified and it becomes easy to manage the
parts and to replace the container type when necessary. Iterators provide “bookmarks”
into the containment so that multiple clients of the collection can easily track where
they are without stepping on the toes of other clients.

Figure 7.2 shows the basic structure of the container-iterator pattern.’ Note that
it uses both generalization and parameterization.® Figure 7.3 shows how you might
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Figure 7.2 Delegation example—container-iterator pattern

The container-iterator pattern is so common and useful that Rhapsody provides the pattern out-of-

the-box. Whenever a model contains a * multiplicity, Rhapsody (by defaulte—you can turn it off if
desired), generates containers and iterators to manage the containment.

Generalization (aka “inheritance”) is used when you want to specialize the behavior but work on

data of the same type. Parameterization (aka “template classes in C++ or “generics” in Ada) is used
when you want to have exactly the same behavior but work on different data types.
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go from an analysis class that must manage the containment of many messages to the
separation of that concern into a separate queue class. Lastly, Figure 7.4 shows the

details of how the pattern is instantiated to achieve this separation of concerns.
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Interface Abstraction Pattern Strategy

The interface abstraction strategy separates the things that change from the things
that don’t. Specifically, the specification of services (operations and events) is sepa-
rated from the implementation of the desired services. This allows the services to be
provided in different flavors, each of which optimizes a different set of criteria, such
as worst-case performance, average performance, space-complexity (i.e., memory

usage), reésource usage, etc.

The adaptor pattern is a prime example of the interface abstraction strategy. The
situation arises when the client needs or expects a certain interface, but it is differ-
ent from what is provided by the underlying realization. A simple example occurs
when a track manager needs to get data from a variety of different sensors, but the
sensors are from many different vendors and even nationalities. The solution is to
require a common interface and write adaptors that convert service requests to the
sensors and responses coming from the sensors to meet the expectations of the track
manager. Figure 7.5 shows the structure of the adaptor pattern. You can see the client
expects a certain interface (TargetInterface). The adaptor subclasses both the desired
interface and the implementation (Actuallnterface). Then the implementation of the
TargetInterface services is specialized to implement the expected interface in terms
of the actual implementation offered by the Actuallnterface.

ﬁdapter Pattefﬁ'\]

.. Class adapter

- Targetinterface Actualinterface
Client 1
request():void = adaptedRequest():void
ClassAdapter
; L___ itsAdaptee->
Hrequest():void I =
& adaptedRequest():void e b

Figure 7.5 Interface example—adaptor pattern

Figure 7.6 provides another simple example of the use of the adaptor pattern. In
this case, the client needs a stack, but what we have is a linked list. The IntStackAdap-
tor class subclasses both the IntStack and the Linked list. The inherited operations
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from IntStack are overridden to provide the desired functionality using the insert()
and remove() operations of the linked list implementation.

Client IntStack LinkedList
1
= headPtr:Element*

= push(n:int):void - Element

& pop():int Hinsert(theN:int)-void O

HtopOfStack()int Eremove():int - n:int

= IsEmpty():bool

— EgetN()int

T T BsetN(theN:int)...
Adapter Pattern > nen’Pm prev’]\a.w
. Class adapter p IntStackAdapter

Figure 7.6 Use of adaptor pattern

Design patterns consist of four primary aspects:’
* Problem
— What problem does the pattern address?
* Applicability
— Which design criteria does the pattern optimize?
— When is the pattern applicable (i.e., what is the common problem context)?
* Solution
— The pattern specification
* Consequences of the pattern
— Pros (benefits) of the pattern
— Cons (costs) of the pattern

Mechanistic design patterns are medium scale, involving as few as two or as many as

a dozen classes. The interested reader is referred to the references for more patterns.®

7 The exact number of pattern aspects differs depending on the author consulted. We believe these are
the most important and general aspects.

8 See, for example, the Patterns Home Page at http://hillside. net/patterns. The aforementioned book
by Gamma et. al. is highly recommended, although it is not cast in UML terms. There are mecha-
nistic patterns in the author’s books, such as Doing Hard Time and Real-Time UML, Third Edition.
Another useful book is Applying UML and Patterns by Craig Larman, Prentice Hall, 1998. The
author of the current book teaches a 3-day class on real-time design patterns. Interested parties
should contain the author at Bruce. Douglass@Ielelogic.com.
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Detailed Design

Detailed design optimizes the system at the class level, and so is concerned primar-
ily with class features—attributes, operations, states, activities, and ports. There are
anywhere from 10 to 100 classes (and possibly more) involved in a collaboration
but only a few of them really require special attention. This is because either they
are more complex than their brethren, either in data structuring or in behavioral
complexity, or because they are part of a control or data flow that has high optimi-
zation requirements.

Figure 7.7 shows the detailed design workflow as specified in the Harmony process.
You can see that the classes are optimized one at a time. The specific optimization steps
are between the fork and join, indicating that the order in which these optimizations
are done is not specified (you get to choose ©). Further, not all of these steps need
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Figure 7.7 Harmony detailed design workflow
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to be taken for each class under consideration. Some classes may require primarily
data restructuring while others might require state machine optimization.

Like the preceding design phases, detailed design proceeds largely through the
application of design patterns, although in the literature they are more commonly
referred to as design “idioms.” That is, for the most part, the problems you're trying
to address in this most-detailed level of design have been solved before in different
systems and perhaps for different applications. However, those solutions can be
abstracted, generalized, and reapplied in new situations, including your current

system under development.
The issues normally addressed during detailed design include:
* Ensuring operation pre- and post-conditional invariants, such as
— Range checking
— Reasonableness checking
—  Unit checking (e.g., miles vs. kilometers)
* Internal data structuring
* Internal algorithmic structuring and optimization
* Optimization of state machines
* Specifying local error and exception handling (both accepted and thrown)
* Low-level redundancy for safety and reliability
* Numeric round-off error management and correction
* Abstraction of services into interfaces
¢ Class feature visibility
* Ensuring quality of service budget adherence for services
* Realization of associations, e.g.,
— Pointers
— References
—  Object IDs
—  Widget handles
—  Sockets

The first five of these get most of the attention, but all are important. For

example, consider the following general problem for a class state machine: the state
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machine wants to remember that an event happened in the past and handle it when
it is convenient, or relevant, to do so. It is easy to use AND-states and see if another
AND-state is in a particular state with the IS_IN(stateName)® operator, but how do

you remember that an event or state was ever visited in the past?

One answer is the latch state pattern.'® The structure of this pattern in shown
in Figure 7.8. The state machine has three AND-states. The predicate AND-state
is responsible for identifying the predicate event—that is, the event that must be
remembered. The latch AND-state is responsible for remembering that the event
occurred. The dependent AND-state depends upon the event that was remembered.
When the predicate state receives an event that should be remembered, it generates
a different event (the GEN() action in the predicate action list) that causes the latch
AND-state to transition from the Unlatched to the Latched state. Later, when the
dependent state receives an event that requires the original event to have been received
at some point in the past, a guard checks to see if the latch is in the Latched state. If
it is, then the guard is TRUE, and the transition can be taken. When the transition
is taken, another event is generated that clears the latch by sending a clearLatch
event, causing the latch to transition back to the Unlatched state.

LatchStatePattern |

Predicate

| p1/GEN(eventToLatch) ContinuingState

o 'y PredicateState )
- ™~ . p2
Q.atch State Patteer

PrepredicateState

e )),./ Latch

] Unlatched eventTolateh Latched

]
clearLatch
Dependent
PredependentState | dIS_IN(Latched)) [ pependentState

. GEN(clearLatch)

. L

Figure 7.8 Latch state pattern

IS_IN(state-name) is a behavior of a reactive object, returning TRUE if the object is currently in the
specified state and FALSE otherwise. Rhapsody supports this query.

The concept of state behavior patterns was introduced in a previous book by the author: Doing Hard
Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns, Addison-Wesley,
1999.
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Figure 7.9 shows a simple usage of the pattern. A sensor runs three AND-states.
The top AND-state has the responsibility for acquiring the data when available. The
bottom AND-state takes the data and performs some long computation on the data.
Because this computation can take a long time, and because the bottom AND-state
doesn’t want to miss any incoming events when it can get around to processing it,
the event is remembered by the latch AND-state in the middle.

/// o \\.
-
Latch State Pattenﬁ
example y
SensorActive | e -
evDataReady/ Predicate

x = getData();

WaitingForData GEN(evHasNewData) W
™ evDataComplete
>

evSensorReset

ResetingSensor

NoData ovHasNewData HasNewData

evClearDataLatch

* [else] Dependent
[I1S_IN(HasNewData))/
Y
tm(100 GEN(evClearDatalatch) -
ReadyToProcessData % ProcessingData @I

" doLongComputationOnData(x);
MareProcessing 2

"= doEvenMoreProcessing(); ...

Figure 7.9 Use of latch state pattern

Other than the use of state machine behavioral patterns, most of the optimization
done within detailed design is done “below” the UML modeling level. For example,
range and validity checking is done by adding actions to methods, activity diagrams,
and state machines.!! There are a few other optimizations that manifest themselves

in the model as well, such as the identification of interfaces, additional class-level

""" The action language is the language used to specify primitive behavioral statements (“actions”) in the

UML. The UML specifies the kinds of things that an action language must be able to state in the
UML action semantics specification, but does not specify or define a particular action language. It is
most common is to use the implementation language (e.g., C, C++, Ada or Java) as the action lan-
guage in the model. Some tools have proprietary action languages but these are not without prob-
lems, including difficulty in debugging and lack of reverse engineering code changes when necessary.
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data redundancy, and feature visibility, but much of the optimization takes place
by adding actions to achieve specific optimizations.

For example, suppose we have a class PatientInfo that has attributes of height,
weight, age, sex, ID#, address, phone. Some of these are safety-critical (weight, age,
sex, and ID), and so they can be stored redundantly. Further, additional checks
can be made for reasonableness. Figure 7.10 shows how range and data corruption
checks might be added in detailed design. The PatientInfo class has redundant one’s
complement storage of the safety-related values.'* The comments show the actions
within the mutators (setWeight()) and accessor (getWeight()) operations that perform
range checking and check that the stored data was not corrupted."

B
void PatientInfo::setWeight(w:int; units:WeightUnits)|(
/!
// check data ranges
4

if (units == UNITS_LBS) ( // only Lbs and Kgs accepted as units

w = convertLbsToKg(w);
units = UNITS_KG) ;

¥
if (units != UNITS_KG) throw WEIGHT_UNITS_ERROR;

if (w<=0 || w>400) thzow WEIGHT_RANGE_ERROR; // weight in K@
if (age<0 || age > 150) throw AGE_RANGE_ERROR; // age in years
if (age < 2 && weight > 20) throw WEIGHT_RANGE ERROR;

if (age >=2 && age<l0 &6 weight > 200) throw WEIGHT_RANGE_ERROR;

Patientinfo
H weight-int
H weight_inverted:int
H ageint

H age_inverted:int

H sex:MaleFemale Type

H sex_inverted:MaleFemale Type
= ID:long

// zange iz ok, set the valus; ~ Hip_inverted:long
weight_inverted = ~u; =
weight = w; S setWeight(w:int units:WeightUnits)-void;

) | EgetWeightinKg():int;

/| EsetAge(aint):void;
A | Sgetage(yint;
A HsetSex(mf:MaleFemale Type):void:

HgetSex():MaleFemale Type:

[@setiD(newlD:long):void;

EgetiD():long;

int PatientInfo::getWeightInKg(void) ( // returns weight in KG |
// check data for corruption
if (weight == ~weight_inverted)
return weight; 7
else throw DATA CORRUPTION;
]

Figure 7.10 Safety checks

2 One’s complement (bit-wise inverted) storage is used in case the problem is with stuck-at-0 or stuck-

at-1 memory faults.

Corrupted data is a problem in electronically noisy environments. The author has personally wit-
nessed memory bits flipping within a medical treatment device while in a medical operating room
environment due to the operation of electrosurgical equipment.
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Problem 7.1 Applying Mechanistic Design Patterns—Part 1

In this first problem, we'll apply certain mechanistic design patterns to the Road-
runner Traffic Light Control System and the CUAV. In the next problem, we'll take
the solution further and add more design patterns to resolve more design issues and
further optimize the solution.

There are many design patterns that can be applied to the systems we've been
modeling—hundreds of possibilities, at least. In this problem, we'll discuss a couple
of design problems and patterns that address it, and then you'll incorporate them
in your model.

The Roadrunner Traffic Light Control System must interface with many differ-
ent sensors from different manufacturers. Also, the system needs to be able to easily
adopt new sensor modalities. To do this we need to support a general interface for
both vehicle and pedestrian sensors and use adaptors to support different specific
sensors and sensor technologies. The task for this part of the exercise is “Optimize
the collaboration for support of different sensor modalities and technologies.” So,
for the first part of this exercise, apply the Adaptor pattern, discussed earlier in this
chapter (see Figure 7.5 and Figure 7.6), to optimize the Detect Vehicle collaboration
to support different sensors. Figure 7.11 shows the starting point, the object analysis
model of the Detect Vehicle use case. Show the resulting mechanistic design-level
class diagram.

For the second part of this problem, we’ll address noise reduction and image
enhancement in the image processing of the Reconnaissance Management Subsys-
tem (RMS) of the CUAV. This is a crucial problem that must be solved for effective
reconnaissance and track management. It may be necessary to add or delete different
image-processing algorithms dynamically, based either on commands from the Mis-
sion Ops personnel or onboard by trying a best-fit or error minimization function.
Some noise reduction and image enhancement algorithms are:

* Gaussian sharpening

—  Gaussian sharpening removes noise by convolving the original image with a
mask. This brings the value of each pixel closer to that of its neighbors.

* Averaging Filter

— Averaging is a degenerate case of Gaussian filtering, where the function
defining the mask values has an infinite standard deviation.
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Figure 7.11 Roadrunner Detect Vebicle collaboration

¢  Median filter

— A median filter is a nonlinear filter that can preserve image detail. A median
filter works by:

» considering each pixel in the image

» sorting the neighboring pixels into order based upon their intensities

» replacing the original value of the pixel with the median value from the
list

¢ Center-surround neural network error minimization

— A neural network is an ordered collection of rather simple processing units,
arranged to perform error minimization. Neural networks usually require
training (by applying examples with known results, hundreds or thousands
of times). Neural networks come in several types. A center-surround neural
network is the computational basis for image sharpening in the human visual
system and works by sharpening edge boundaries in images.
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There are, of course, many more image-enhancement algorithms from which

to choose. The RMS may have a dozen or more available from which to choose.

The RMS needs some way to efficiently switch algorithms or to chain algorithms

together to provide optimal image processing. The goal for this part of the problem

is to “Optimize the system for flexibility in supporting multiple image-processing

algorithms in sequence.”

To realize this goal, instantiate the chain of responsibility pattern, discussed in

the sidebar.

Chain of Responsibility Pattern
Problem:

You want to have flexibility in the addition of new and possibly multiple
algorithms (“handlers”).

Applicability:

When the best place to handle a request isn’t known at design time
When you want to support a multilevel response
When you want to be able to dynamically modify the response

When you want to be able to give a set of possible responses each a
chance to handle the request

Solution:

Decouple the request handling from the receiver of the request by creating a
chain of handlers and pass the request from handler to handler so that they
each get a chance to respond until either the list of handlers has responded or

all handlers have been given the chance to respond. Any specific handler can:

Choose to handle the request and terminate
Choose to handle the request and pass on the request to the next handler

Choose not to handle the request and pass on the request to the next

handler

Consequences:

Reduced design-time coupling of the class that receives the request from
the algorithms that process the request

Ability to add request processing dynamically

There is no guarantee that a request will be handled because there is no
grand oversight
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Structurally, the chain of responsibility is a very simple pattern, as we can see
in Figure 7.12.

nextHandler | 0,1
Handler
Client 1
& handleRequest()-void
HinstallHandler(h:Handler*):void
E deinstallHandler(h:Handler*):vaid
/."" \“\_\
4 A ConcreteHandler
Chain of Responsibility B :
void handleRequest(void) {
- Pattern p - il do algorithm, then pass it on
- ’/,/ E handleRequest()void 11 (if appropriate)
- - N
N if (nextHandler = null)
nextHandler->handleRequest();
i/ end handleRequest

Figure 7.12 Chain of responsibility pattern

For this exercise, use the chain of responsibility pattern to improve the algorithmic
flexibility of the image processing for the Reconnaissance Management subsystem,
whose analysis class diagram is shown in Figure 7.13. Show the resulting mechanistic
design-level class diagram. Hint: for this exercise, you need only show the elements
from the collaboration that relate to the application of the design pattern.
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Figure 7.13 Reconnaissance Management .fubsystem Acquire Image collaboration
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Problem 7.2 Applying Mechanistic Design Patterns—Part 2

In this next problem, we're going to continue applying mechanistic design patterns
to the collaborations we've been working on. For the Roadrunner system, we want
to optimize the timely update of change-of-state information of the lights to the
IntersectionController, as well as to the other vehicle lights (from the safety archi-
tecture, it was determined that the lights need to share contextual state information
to ensure an appropriate overall system state). It is true that the light assemblies
can, whenever they change state, notify the IntersectionController and the other
clients. However, we may want to dynamically add other clients of that information,
even at run-time. In such cases, there must be a mechanism in place to let the light

assemblies know to whom the state information should be sent.

A common solution to this problem is provided by the observer pattern (also
known as “publish-subscribe pattern”). In this pattern, the servers (in this case,
the light assemblies) don’t know their clients a priori, but instead are instructed,
at run-time, to add clients who wish the information. They do this by providing a
subscription mechanism in which the clients subscribe and provide their contact
information. When it is appropriate (in this case, when the light assembly state
changes), the client list is walked and the information is sent to each subscriber. The
observer pattern is one design solution that could be used in this case. However, we
have a deeply cross-connected system. In the safety analysis done in the previous
chapter, it was decided that each light will talk to the others and in this way ensure
that the system overall will always remain in a safe state (that is traffic is never allowed
to go in crossing directions at the same time).

Another option is the data bus pattern.' The data bus pattern optimizes the
connection topology of deeply cross-connected architectures by providing an object
that serves as a repository for shared data. In the “push” version, when the server
changes state (or changes the value of interest), the data is pushed to the data bus,
which in turn sends it to all the subscribers. This simplifies the construction and
maintenance of the cross-connecting topology.

14 See the author’s Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems,

Addison-Wesley, 2002. The pattern shown here is slightly modified from that reference.
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Data Bus Pattern (Push Variant)

Problem:

Need to be able to share data among many different clients.
Solution:

This is a variant of the observer pattern, where a data bus object holds shared
data and distributes the datum whenever a new value is “pushed” to the data
bus. Clients subscribe to data of interest owned by the data bus.

Consequences:

* A simple pattern that allows the addition of clients at run-time and
simplifies deeply cross-connected topologies.

* Additional memory is required to hold copies of the data and the
notification handles (addresses) of the clients

Figure 7.14 shows the structure of the data bus pattern. The composition shows
that the different composites own their own copies of the data. The pattern can
be mixed with other patterns, such as proxy or broker, to enable the pattern in
distributed architectures.

NotificationHandler q . NotificationHandle I
|
|

Data Bus Pattern
(Push Variant)

- H addr:Address

_—
v
|

L |

1

]
DataBus

i
|

|

| 1. A
| e =
|

|

Supdate(d:AbstractData):veid;
S subscribe(idIDType. addr:Address):void

(=3 DUnsUbSCrlbe[ld:‘DType.addr:AddreSS]:\'Old
{mapped} & subscribe(dataName:OMString addr-Address) vaid |55
one-per-one Sunsubseribe(dataName:0MStrijng addr:Address) void An enumerated type of the

different semantic data
| values to be stored.

I

|

L

1 s

«Typen

«Usage» - IDType
AbstractData e
AbstractDataClient 1 * | B datalD:DType " AbstractDataServer
kil H dataName:OMString -
- T
1 =7 /
/ m
The subglass adds the ConcreteDataServer
ConcreteDataClient ConcreteData specific typed value

_ — — —beingrepresented

H value:DataType

Figure 7.14 Data bus (push) pattern
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Figure 7.15 shows a simple application of the pattern. In this case, two data

elements are put into the data bus. The train speed sensor creates an instance of

the VelocityData class and calls update() to update the value. The GPS object cre-

ates an instance of the PositionData class and similarly updates the copy owned by

the data bus. The engine closed-loop control needs, and subscribes to, the velocity
data while the display subscribes to both velocity and position. When the data

is updated, the clients are updated automatically by the data bus. The DataBus::

update() operation locates the appropriate instance of which to update the value;

if the ID or name can't be found, a new one is added to the composite along with

a new notification handler.

Data Bus Pattern

Example

Naotificationtlandler

’1

NotificationHandle

= addr Address

DataBus

o}
{mapped}
one-per-one

AbstractlJataChent

DisplayClicnt

L

- M dalaMame. OMSling

Bupdato(d AbstractData).void;

Bsubscribe(idDType addr Address)void
Bunsubscribe(id IDType addr Address) void
Bsubscribe{datablame: OMString, addr Address)vaid
Hunsubscribe(dataMame: OMString addr Address)void

1

AbstractData Les

® | Bdatall D Iype

B

ICTypois
enumerated type
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VELOCITYTYPE }

e

Typer
«sager - IDlype

PosilionDala

y R,
1

EngineClosedLoopContioller

= latiudelong
B iongitude:long
il 8 altitude:double

VelocityData

B speed.double;

AbstractDataServer

TrainSpeedSensor

Figure 7.15 Data bus pattern example

Now to apply it in our problem ... For this part of the exercise, apply the data

bus pattern to manage the update of the states of the individual light assembly

instances and distribute them to all the interested clients.
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For the second part, let’s consider again the CUAV Reconnaissance Management
subsystem Acquire Image collaboration in Figure 7.13. We see that commands are
sent from the Mission Ops actor to command the acquisition process in a variety

of ways:

* Configure sensor

¢ Orient sensor

* Request image

* Configure image processing

*  Set target types and their properties

These commands must persist until handled. The command pattern provides
a design means to address this kind of object interaction. The pattern is described
in the sidebar. It works basically by reifying the command or requesting itself as an
object, allowing it to be remembered and manipulated. Figure 7.16 shows the basic
structure of the command pattern, while Figure 7.17 shows a simple example.

Invoker 1 - Command
""//l - I\\\‘\ &run():void
<Command Pattern> T
T Receiver : ConcreteCommand
& doAction():void Erun():void
P ~

m

itsReceiver->

doAction();

Figure 7.16 Command pattern
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Command Pattern
Problem:

You want to manage requests that require logging, queuing, or take a period
of time to fulfill.
Applicability:
*  When you want to take a request through a series of states (steps)
*  When you want to manage multiple requests simultaneously, each
in possibly different states
*  When you want to support undo
*  When you want to log or queue requests

Solution:

* Reify the request as an object, possible with internal state
e Aka “transaction pattern”

Consequences:

*  Allows simultaneous management of multiple requests easily

* Commands are first-class objects and can be subclassed and extended

*  “High-level” commands may be assembled from smaller command parts
* Easy to add new commands

- Ty

- A ElevatorDoor
Command Pattern )
. example -
- - i
RequestClose
Button 1 Command  K\—
,;7\-’(\\

e AN e RequestOpen
N e
RequestFloor \‘x\
Elevator RequestDown
i

RequestUp
1

1
DestinationQueue 1

= ElevatorSelector

Figure 7.17 Command pattern example
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For this latter part of this problem, apply the command pattern to the CUAV
to specify and optimize how it handles and manipulates commands.

Problem 7.3 Applying Detailed-Design
State Behavior Patterns

The next problem brings us into the detailed-design phase. As discussed early in
the chapter, detailed design is all about optimization at the class or object level of
scope. This problem will deal with the optimization of class state machines to solve
particular detailed-design issues. That is, we will look for opportunities to apply state
design patterns to the state machines in the classes of the collaborations to optimize
or simplify their structure and/or behavior.
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Figure 7.18 Light assembly statechart

Figure 7.18 shows the statechart we presented previously for the vehicle light
assembly. We note that this state machine already uses the latch pattern discussed
earlier in this chapter. We know that the light assemblies must support more modes
than this, including (see the use case chapter or Appendix A for more detail):

* Safe intersection mode (all lights flash red)

* Evening low volume mode (primary flashes yellow, secondary flashes red)



202 Chapter 7

Fixed cycle time mode (fixed time cycling of lights)
Responsive cycle mode (lights cycle according to traffic)

Adaptive mode (like fixed cycle time mode except that the length of the cycle
times vary depending on traffic load)

In general, whenever you see the word “mode,” think “state.” This means that,

at the high level, the lights must support several modes of operation:

Off

Safe (Flashing Red)
Cautionary" (Flashing Yellow)
Fixed Cycle

Responsive Cycle

Adaptive time Cycle

Moreover, we must be able to transition directly from any of these high-level

states to any other. If we draw such a state machine, it looks like Figure 7.19. The

term “rat’s nest’” comes to mind.'® Isn’t there a cleaner, simpler way to represent
exactly the same behavior?

Figure 7.19 Transition among high level states

Note that these states are from the light assembly’s point of view. In Evening Low Volume (system)
mode, the primary light would be in Cautionary state while the secondary light would be in Safe
state.

I suppose rats have to have a place to live, too—I just don’t want them in my software!
pp p ) y
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The any state pattern uses composite states to simplify the transition structure
while providing exactly the same behavior. It accomplishes this by placing the seman-
tic states inside a composite and drawing a single transition from the composite
state to the internal semantic state. That transition represents all transitions from
the peer semantic states because whenever the object is “in” the composite state,
the transition may be invoked, regardless of exactly which nested semantic state is
active. Figure 7.20 shows the rat’s nest state machine before, and the streamlined
and exactly equivalent state machine after encapsulating the semantic states with
the composite.

| state 3 |

/Any State Pattern‘\)

state_2
state_0 -

\ ]
. before 2 ‘ +

CompositeState

e ——— _-4"’{ state 0 +—@ state_3
n ) =—

” Any State Patter
after i

.

-| state_1 | state 2 [ T
|

Figure 7.20 Transitions among high-level states with any state pattern

For this part of the exercise, apply the any state pattern to the light assembly state
machine; be sure to include the appropriate events, guards, and actions (as neces-
sary) on the state machine. The high-level states don’t need to be detailed on the
same state machine; in fact, I recommend the use of submachines (state machines
drawn on a different diagram but represented as a state on the high-level diagram)
to make the diagrams more readable.

For the Coyote UAV, we havent built any state machines yet for the Acquire
Image collaboration (shown in Figure 7.13). In this exercise, you will construct a
statechart for the ImageManager to acquire and process image data from the radar,
FLIR, and optical payloads. To solve this problem, do the following:

* Treat the ImageManager as a composite class and create a structure diagram for
this class.
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* Add in three parts to manage the acquisition and image processing of the payload
image data:

— theRadarDeviceDriver:RadarDeviceDriver
— theFLIRDeviceDriver:FLIRDeviceDriver
— theOpticalDeviceDriver:OpticalDeviceDriver

* In a separate class diagram, create a class called SensorPayloadDeviceDriver as
the base class for these three classes and make the specific device driver classes
subclasses of this.

* In the SensorPayloadDeviceDriver class, add a statechart that has the
following states:

- Off
—  Waiting ToGetRawImage
— ConstructingImage
— Preprocessinglmage
— AddingMetadataState
* Link the states with the following transitions:

— In this state machine, when it is off an evEnableSensor event takes it to the
WaitingToGetRawlmage state.

—  From there, evimageStart event takes the machine to the Constructinglmage
state, executing action “initializelmage()”.

— From that state, an evlmageData event transitions back to the Con-
structinglmage state, executing the action “addDataTolmage()”.

— From that state, an evimageComplete event transitions to the Prepro-
cessinglmage invoking the handlers added when we added the chain of
responsibility pattern earlier in the chapter by executing the action image-

Handler->handle().

—  When that processing is complete, transition to the AddingMetaDataState
and invoke the action “thelmage->addMetaData().

—  Once that is complete, cycle back to the WaitingToGetRawlmage state.

— If atany time (except in the Off state), new data becomes available (i.c., an
evlmageStart event is received), abort the current image and cycle back to
the Constructinglmage state and execute the action “initializelmage()”.

— If, atany time (except in the Off state), an evDisableSensor event is received,
abort whatever image processing is proceeding and transition to the

Off state.
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This is the first half of the problem. Now we have to address the concern of how
we get the data. Let’s suppose that we want to get the data by checking periodically,
a process known as polling. How do we effectively poll on a periodic basis?

One solution is the polling state pattern. This pattern consists of two and-states.
The first, called the “DataHandlingRegion” in Figure 7.21, is where the semantic
handling of the data occurs. When it commanded into the Active state, it sends an
event, which is consumed by the second and-state. This latter and-state focuses on its
responsibility to periodically check for new data. When the POLLTIME period has
elapsed, it invokes the acquireData() action, polling for the data, and then generates
the evDataReady event. The first and-state consumes that event and transitions to
the CrunchingData state to handle it.

The polling pattern simplifies the overall behavior by segregating the semantic
data manipulation from the work of acquiring the data periodically.

( Polling State Pattern)

PollingStatePattern ‘ T J—

DataHandlingRegion

Active
evStart/ Ide
* GEN(evEnablePaling)
& ol e —»
Inactive — ) i
evDataReady
¥
I evstopr T — —| CrunchingData
GEN(evDisablePolling)

PolingRegion

v oy
NotAcquiring evEnablePolling » WaitingToAcquire | tm(POLLTIME)
. 1 acquireData(),

— | evDisablePolling GEN(evDataReady);

Figure 7.21 Polling state pattern

Figure 7.22 shows a simple application of the polling state pattern for acquiring
air speed data. When it starts, it powers the hardware and enables polling. When
data is acquired from the air speed sensor, the second and-state generates an event
that causes the semantic region to filter and then queue the manipulated data.

Let’s now apply this pattern in the CUAV model. For the latter part of the
exercise, add the polling pattern to the statechart you've constructed to add polling
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behavior. Just to make it interesting, the acquireData() operation returns a value
called success which can be one of three values: 0 (NONE), in which case data is not
ready; 1 (NEW_IMAGE) in which a new image is ready to begin (i.e., generate a
evlmageStart event), or 2 (ADD_DATA) in which case the next part of the current
image is ready (i.e., generate an evimageData event). Incorporate this functionality
into the resulting state machine.

'E’olling State Pattern>

- example .

AirSpeedSensorStates ‘

DataHandlingRegion

Active
evStart/ \dle
powerADConverter();

,’ enableSensor(); ~—
¥ GEN(evEnablePolling)
Inactive Ll evDataReady/ 3

fData = filterData(data);
itsQueue->insert(fData):
¥

- |
evStop/ ; ]
————————" GEN(evDisablePolling); Enaingliste
disableSensor();
depowerADConverter(); L ]

PollingRegion .

/

tm(POLLTIMEY!

-y
NotAcquiring | SVENablePoling [ waitingToAcquire | data = acquireData();
GEN(evDataReady);
o
evDisablePolling

Figure 7.22 Polling state pattern example

Problem 7.4 Applying Detailed Design Idioms

For this last problem, I'd like to address some detailed design idioms. There are
many small detailed optimizations that are typically performed in detailed design.
These are listed earlier in the chapter. In this last problem, we will deal with two
detailed-design issues. First, how does one handle errors or exceptions in the UML,
especially in state machines, and second, how do we ensure adherence to precondi-
tional invariants on service requests?

The common idiom in C to handle errors is to return a nonzero value from a
function. The problem with this idiom is that every client is free to ignore those
error indications, and I've debugged more than my fair share of defects in safety-
critical embedded systems in which error indications were simply ignored by the
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clients. Exception handling in C++ and Java, though, forces the client to handle the
thrown exception or the calling function terminates. Once an exception is thrown
from a server, the application looks for an appropriate exception handler (i.e., “catch
clause”) in the caller; if one is found, then the exception is handled. If not, then the
caller terminates and the application looks for an exception handler in its caller, ad
infinitum. This process is commonly called “walking back the stack.” Eventually,
either an exception handler is found, or the application terminates.

Such language-specific exception-handling mechanisms have two things going
for them. First, they cannot be ignored and that is crucial for high-reliability and
safety-critical systems. Secondly, they separate the exception handling from the main
functionality, simplifying both. When the two are intermixed, the logic for both the
main processing and the exception handling is muddied and hard to understand.
By separating out the two, both become simpler and easier to get right.

However, these exception-handling mechanisms are not without their problems.
The most significant of these is their inability to handle exceptions across thread
boundaries. In C++, if an exception is not caught by the time the stack has unwound
to the top of the thread, then the thread must terminate, and then the application
must terminate. Another problem is that it isn’t entirely clear how to use exceptions
in the presence of state machines.

State machines in UML may be synchronous (using call events, or what Rhapsody
calls “triggered operations”), asynchronous (using signal events, or what Rhapsody calls
“receptions”), or a combination of the two. If a series of call events affects multiple
state machines and an exception is thrown, then the stack gets walked back just like it
would with normal method calls. It’s a little more complex because care must be taken
to ensure each state machine remains in a valid state, but it is relatively straightfor-
ward. It is much less clear what happens if a signal event occurs. In that case, the stack
walks backwards through the active object owning the event queue, but it would be
odd indeed to have the active object understand the appropriate exception-handling
behavior for all the objects held within that thread boundary. So what to do?

In the UML, an exception is considered to be a kind of signal. In the UML 2.0

Final Adopted Specification, it defines an exception as:

A special kind of signal, typically used to signal fault situations. The
sender of the exception aborts execution and execution resumes with the
receiver of the exception, which may be the sender itself. The receiver of
an exception is determined implicitly by the interaction sequence during
execution; it is not explicitly specified.
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Even in this case, the receiver of the exception is implicit—that s, it is the service
requester. In general, an asynchronous state machine doesn’t know who its sender is,
unless that information is provided as a parameter for the passed signal event."”

So how should we handle exceptions when we have multiple threads and when
we have state machines? Whatever mechanism we use, we would very much like
it not to depend on whether the source event is synchronous or asynchronous,
because having multiple ways to manage exceptions complicates the applications
and makes it pathologically tightly coupled. And, while were at it, we need to be
able to handle normal language exceptions in our state machines as well, because
actions may invoke services—some of which are in the standard libraries, such as

new()—that may throw exceptions.

One solution is the exception state pattern. This pattern uses events to indicate
not only service invocations but also exceptions. The class diagram in Figure 7.23
shows structural elements involved. The StatefulClient and StatefulServer are both
reactive classes; that is, they use state machines to specify their behavior. They also
connect with ports. This is important because the StatefulServer will use the port

- . b
KExceptmn State Pattern)
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1StatefulClientException

alnterfacex» [ —

. g winterface»
iStatefuClient iStatefulServer |

Hex1():void
BevServer():void

EexZ( ):void

Hevi()void
<y

7

StatefulClient | iStatefulServer iStatefulServer StatefulServer E
L y
pServer | - N .
Cl L] pClient

' i
Sex1():void '~ . _ !
Hex2():void iStatefulClientException  iStatefuClientException| g o
Fev1()void JiStatefuClient .iStatefuClient

Figure 7.23 Exception state pattern

An exception (pardon the pun) to that rule is that when ports are used, the source port for an event
can be identified, but even then, it is the port that is identified, not the actual event source. Never-
theless, if the port is bidirectional, the port can be navigated backwards, provided that the exception
is passed as a signal event that is specified in the interface contract of the port.
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name to identify along which link the exception event should be sent. The same
event could be from different sources, but as long as each connects via a different
port, then the source can be identified.

The StatefulClient realizes two distinct interfaces. The first, iStatefulClient, is
the semantic interface. It specifies the events normally received during the execu-
tion of the object’s life. The second, iStatefulClientException, is the exception
interface—these are the events that have to do with the handling of faults and
unexpected conditions and occurrences. The StatefulServer is typed by a single
interface, iStatefulServer.

The ports connecting the instances of the classes are typed by these interfaces.
The StatefulClient port pServer requires the iServer interface and offers both the
iStatefuleClient and iStateful ClientException interfaces. Using two distinct interfaces
helps segregate the normal semantics from the exception handling. The Stateful-
Server port pClient requires both these interfaces, while offering its own semantic

interface, iStatefulServer.

The state machine for the StatefulServer is provided by Figure 7.24. We see how
the exception gets raised in the action list for the evServer event. If the doAction
returns an unsuccessful result, it generates an exl event'® and sends it back to
the original sender. The original sender is identified by the guard on the event;
IS_PORT (pClient) identifies that this event is from the pClient port. If the event
can come from other ports, then they must be listed in other transitions. Following
the sending of the exception event back to the client, an evRollback event is gener-
ated to return to the original state.

Statechart for
I StatefulServer class
evRollback
| ServerPreState [« | ServerPostState

evServer[lS_PORT(pClient))/

result = doAction();

if (result |= GOOD_RESULT) {
OUT_PORT(pClient)->GEN(ex1);
GEN(evRollback);
%

Figure 7.24 State machine for StatefulServer

8 We typically use the ev prefix for normal semantic events, and the ex prefix for exception events.
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Lastly, the state machine for the StatefulClient is shown in Figure 7.25. We notice
that the semantic actions are segregated from the exception actions by putting each
in their own and-state. When the evl event is handled, it sends an evServer event
out the pServer port. If it later receives an exception event (ex1 or ex2), then it does
whatever clean-up is required and then issues an evRollback event to return to the
PredecessorState.

ClientStatechart
SemanticClause

A . ev1/OUT_PORT(pServer)->GEN(evServer)

PredecessorState SuccessorState

evRollback

ExceptionClause

HandlingException B

“=GEN(evRollback)

exd HandlingEx1

WaitingForException

ex2 HandlingEx2

Figure 7.25 State machine for StatefulClient

We see that the pattern works by using a separate set of events, collected into
the iStatefulClientExceptions interface, to represent the exceptions being thrown.
The server uses the IS_PORT() in a guard to identify the source of the event that
led to the exception identification. We create a separate and-state to handle the
exception events. And in both the client and the server, we typically want to do a
rollback to the previous state in the case of an exception being identified. The exact
exception-handling behavior is, of course, case- and situation-dependent but such
specific handling behavior can easily be handled.

In the Roadrunner Traffic Light Control System, the light assemblies associate
with the actual lights themselves. This association is a composition, indicating strong
ownership. In this special case, there is a navigable link between the light and the
composite light assembly. Since no other object can directly command the lights,
ports aren't required. All that is necessary is that, if the VehicleLight or PedestrianLight
has an exception, it passes the appropriate event back to its composite owner.
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The relation between the VehicleLightAssembly and the VehicleLight has *
multiplicity, one for each traffic lane in the “through” direction and another for the
turn lane. The PedestrianLightAssembly has a single light that it controls, so the
multiplicity needs to be changed to 1. These changes are reflected in Figure 7.26.

]
{ Eachlight has 3 bulbs for
Red, Yellow and Green }

- EEeTTTRTTTTE—
=1 VehicleLight “&-; PhotoDetector
| I .

o I
{ The * multiplicity holds for LT \
possibly multiple lights in == \
the same direction, plusa = = \
turn light } \\
itsOwner L 1 . \ pLightPort
aSubsystem: | \ r
VehicleLightAsssembly I \ “Subsystem> %
1 o PedestrianLightAssembly
| {Thereisa [
photodetector for each
| bulb }
| /
. 'm 'm f itsOwner 11 ©
pDetector  yLjghtPort pPed ! { Eachlight has 2
/ bulbs for Walk and
;’ Don't Walk }
,’ itsLight [1 -~ -
PhotoDetectar . i ‘ PedestrianLigh
o

Figure 7.26  Light assemblies and lights

For this exercise, add the statecharts for the vehicle and pedestrian lights (the
lights are dumb, so any state may be entered from any other state—sequencing is
handled by the light assemblies). Then add the exception state pattern to handle
the error condition that when a bulb is illuminated, the photo detector does not
detect the light going on. As mentioned, ports aren’t required because the light
assembly has a composition relation with the lights, and that composition provides
a navigable link at run-time.

Next, let’s work on the CUAV. Previously, we added the polling state pattern to
the Acquire Image collaboration for the Reconnaissance Management Subsystem for
the CUAV. In this exercise, we want to avoid a problem commonly known as “lock-
up’—that is, the condition in which a system stops what it is doing, either because
of a software or hardware fault. The solution we will add into the collaboration is
called the watchdog pattern. The watchdog pattern is detailed in the sidebar.
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Watchdog Pattern

Problem:

Need to ensure liveness of periodic processes.
Solution:

Run an observer in a separate thread that receives “life ticks” on a periodic
basis. If the watchdog doesn’t receive the life tick in a timely fashion, the
system is assumed to have locked up and some draconian response, such as
system (or subsystem) reset, or transition to fail-safe state, is taken.
Consequences:

e Useful only when the timeliness of the monitored processes can be pre-
dicted with fair precision.

* Different watchdogs can be used for different processes when specialized
responses are required to different process faults.

* Many different processes may be monitored.

The watchdog pattern works by having a watchdog active object (or it runs in its
own thread) monitor clients. The client must subscribe to the monitoring services
by invoking the addMonitor(timeout:long) operation. This operation results in the
creation of a monitor (called a WatchPuppy in the pattern) with the appropriate
timeout and returns the ID of the monitor. This ID is used to identify which client is
stroking which watchdog via the stroke(ID) operation. This results in an event being
generated to the appropriate WatchPuppy. Should a given WatchPuppy timeout,
it invokes the timeoutFault(ID:int) operation. The watchdog then in turn invokes
the handleFault() operation on the SafetyExecutive, which takes whatever corrective
action is appropriate. In the simple version, any fault results in the same action,
e.g., a subsystem reset, but since the WatchPuppy ID is returned, more elaborate
client-specific behavior could be easily added. Note that care must be taken that
the timeout should be not less than the period of the process plus whatever jitter'
occurs in that period.

Also note the use of the WatchPuppy puppylD attribute as a qualifier. This means
that the puppyID is used to discriminate among multiple WatchPuppy instances;

Y Jitter is the variance in the period of a periodic process. It is normally specified as an absolute value. A

periodic process might have a period of 30ms +/— 2ms, where 30ms is the period and 2ms is the jitter.
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the most common implementation is to make an array of WatchPuppies and the
puppylD is simply the index into that array.

| WatchdogClient

H moniterID:int

Watchdog Pattern

\Watchdog WatchPuppy =]

H timeout:long

H highestPuppylD:int

HaddMonitor(timeautiong)int
Estroke(monitorlDiint).void;

1 *
puppylD

B puppylDint

EevEnable( ):void
BevDisable():void

BtimeoutFaultpuppylDiint)-void; B evStroke()void

1

SafetyExecutive

BhandleFault():void

Figure 7.27 Watchdog pattern

The state behavior for the WatchPuppy is straightforward. As long as it receives
the evStroke event frequently enough, the event arrives before the timeout fires.
When the transition handling the evStroke event is processed, the state is exited
and then re-entered, causing the timeout to be reset. The timeout fires only when
the WatchPuppy hasn't received an evStroke event soon enough. This state machine
is shown in Figure 7.28.

v
[ Off
~ ~—__evEnable
r A v N | evStroke
\ WaitingForTimeout J

\ evDisable

tm(timeout)/
itsWatchdog->timeoutFault(puppylD);

Figure 7.28 WatchPuppy state machine
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For this last exercise, add the watchdog pattern to the Acquire Image collabora-
tion to detect if the sensor device drivers fail for some reason. When this occurs,
the SafetyExecutive should destroy and restart the ImageProcessing object. Show
the resulting class diagram, and the updated state machine(s).

Summary

In this chapter, we have explored both mechanistic and detailed design. As with
architectural design, these processes are about optimizing the system against various
design criteria. Mechanistic design is focused at the level of the mechanism or col-
laboration, while detailed design focuses on the individual object. There is, naturally
enough, some blurring of the lines among architectural, mechanistic, and detailed
design. Such is the nature of artificial taxonomies, so you will occasionally come
across a design decision that is the software equivalent of the platypus and doesn’t
fit neatly into the normal taxonomy. However, the taxonomy is useful because the
literature is itself implicitly organized that way, and the use of the taxonomy makes
finding the relevant patterns easier.

All of design is concerned with optimization and most of the design approaches
are not fundamentally innovative. They are adaptations of previously used solutions.
When a solution can be abstracted and reused in a different context, it becomes
a pattern. The notion of patterns is so helpful that there are dozens of books and
thousands® of web pages devoted to them.

This chapter wraps up this workshop. We've walked through the Harmony
process from identification of use cases all the way through detailed design. I hope
that it’s been an interesting, useful, and enjoyable trip! ©

20

A quick Google of “design patterns” returns about 14,000,000 hits!



Specifying Requirements: Answers

Answer 3.1 Identifying Kinds of Requirements

This exercise should hold no difficulties. It is a simple matter to create the require-
ments elements and link them together in a taxonomy with stereotyped dependencies.
In this case, I split the requirements into two diagrams, as shown in Figure 8.1 and
Figure 8.2. Note that I used the Rhapsody feature to insert a bitmap image showing
the arrangement of the system elements in context.

The Roadrunner Traffic Light Control System: Overview
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Figure 8.2 Special mode requirements

Answer 3.2 Identifying Use Cases for Roadrunner
Traffic Light Control System

Figure 8.3 shows a set of use cases for the Roadrunner Traffic Light Control System.
The two primary use cases are Configure System and Manage Traffic. The Configure
System use case interacts with either the operator of the front panel or the remote
monitor. Independently of how the configuration takes place, the system also, of
course, manages traffic.

The relations among the use cases were arranged very deliberately. While it
would have been possible to just create a single Manage Traffic use case with a state
machine providing the different modes as high-level composite states for that use
case, that state machine would have been highly complex. I felt it was better to create
subclasses for the different kinds of traffic management modes and have a simpler
state machine for each. In this case, the intersection can switch among these modes

but as far as the operational usage of the system is concerned, they represent separate
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Figure 8.3 Roadrunner use cases

independent uses of the system, hence different use cases. Note that each of these
use cases meets the criteria we set up in Chapter 3:

e It returns a value to at least one actor!

e It contains at least three scenarios, each scenario consisting of multiple actor-
system messages

e It logically contains many operational requirements
e It does not reveal or imply anything about internal structure of the system

e Itisindependent of other use cases and may (or may not) be concurrent with
them

Of course, most of these traffic-management modes require the ability to detect
vehicles and pedestrians. These are modeled as use cases as well, but since they
both contribute several of the Manage Traffic use cases, they are clearly at a lower
level of abstraction than, say “Evening Low Volume Mode.” We use the «include»
stereotype of dependency to show this relationship. We could possibly have made
Detect Emergency Vehicle and Detect Priority Vehicle more specialized use cases

of Detect Vehicle, but in fact the operational effects of emergency and priority

! Note that the specialized use cases inherit the base use case relations to the actors.
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vehicles are fundamentally different and are likely to be used in different ways from
an operational perspective. So while an argument can be made for modeling the
use cases that way, I chose not to. The point is to model the requirements organiza-
tion in a way that is consistent, makes sense, and can be used to move forward into
object analysis and design. There are a number of good organizations that can be
used for that purpose.

Notice also the specialization of the actor Vehicle. Emergency and priority vehicles
are special kinds of vehicles that have special associations with particular use cases
as well as the more generic relation due to the fact that they are, in fact, vehicles.
While it is fair and reasonable to show generalization/specialization relations among
actors, we do not show associations between them. Why? First of all, they are out-
side our scope and we have enough work to do just specifying and designing the
parts we need to construct. Secondly, since it is outside our scope, we have little, if
any, control over those interactions. If they should change, then our model will be
wrong. Better to focus on the parts we need to build.

What about the choice of the actors? Why these actors? Why not “button,” “traffic
light,”
actors I called the “In the Box” rule. If the object is inside the box that I ship to the

walk light” and “vehicle sensor” instead? The rule of thumb I use to select

customer—regardless of whether it is electronic, mechanical, or software—then it is
an object internal to the system. If it is something that either the customer provides
or is found at the operating site, then it is an actor. An actor, then, is the object that
interacts with the things found in the box but is itself not in the box. The problem
statement defines the lights, buttons, and sensors so I'm assuming that they will
be in the box shipped to the customer to be installed at the intersection. This is
always a crucial question to answer, because as developers and manufacturers we
need to clearly understand the system boundary and what we are designing. If the
problem statement said “interface with Acme Traffic Light Models XXX and YYY”
then those would be the actors and not the vehicles. Having said that, an actor is
any object—vegetable, animal (e.g., human), mineral (e.g., silicon-based hardware

device) that interacts with the system in ways that we care about.

One last point about the actors—what about the Remote Monitor actor? The
specification says that the system can be commanded via a network. Note that this
actor isn’t a network interface card (NIC), but the element that uses the NIC to do
something interesting. We want to capture the proper actor in terms of the semantics
of the interaction and not the technology used to communicate; the technology we
will deal with in our design.
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Additional Questions

*  What is the problem with having the two separate use cases “Manage Pedestrian
Traffic” and “Manage Vehicular Traffic?”

Answer 3.3 Mapping Requirements to Use Cases

For this problem, I selected the Detect Vehicles use case. I cut and pasted each individual
requirement from the problem statement into separate requirements elements and
linked them to the use case with dependencies. I felt that it was useful to decompose
the use case into two sub-use cases, one for subsurface passive loop detection and one
for above-surface detection. I also pasted in the bitmap to show the ranging of the
infrared and radar detectors because I felt it augmented understanding. Note that it is
common to use requirements traceability tools, such as DOORS™ from Telelogic to
represent the dependencies between requirements and other model elements as “trace-
ability links.” Rhapsody can export and import these links to and from DOORS.
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Answer 3.4 Identifying Use Cases for Coyote UAV System

The CUAVS is a large system. If we had all the use cases identified at the same level
of abstraction, we might end up with, by the end, hundreds of use cases. Since the
purpose of use cases is to organize the operational requirements into usable, coher-
ent chunks, this doesn’t meet the need. In the figures below, we have identified the
“high-level” use cases and then decomposed them on separate diagrams. We also
added a package to hold the parametric requirements.

Figure 8.5 shows the highest-level use cases. All but one of these (the Manage
Datalink use case) will be decomposed on subsequent diagrams. In Rhapsody, you
can add hyperlinks as user-defined navigational links to link the use cases with the
more detailed use-case diagrams. Also note the package SystemParametrics; it con-

tains a number of nested packages, each of which contains requirements elements
and diagrams relevant to their subject matter.
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Figure 8.5 Coyote UAV system high-level use cases
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Figure 8.6 shows the decomposition of the Execute Mission use case. This use
case contains (via the «include» relation) the Perform Surveillance and Process
Surveillance Data use cases. The use case is specialized into two forms—Execute
Reconnaissance Missions and Attack missions. Each of these use cases is further
decomposed. The former is specialized into Execute ECM (electronic counter
measures), Execute Preplanned Reconnaissance, and Execute Remote Controlled
Reconnaissance. Preplanned reconnaissance means uploading and following a flight
plan which might search an area, along a route, or orbit a point target (such as a
fixed defensive site).
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Figure 8.6 Coyote UAV Mission use cases

The Fly UAV use case is decomposed in Figure 8.7. It is important to remember
that each of these leaf-level use cases is still a system-level use case. That means that
each contains many specific requirements, many scenarios, and is probably detailed
with a state machine or activity diagram.
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Figure 8.7 Coyote UAV Fly UAV use cases

Additional Questions

*  What would the use-case model look like if it was drawn as a flat organization?

Draw the diagram of that model and compare and contrast the presented hier-
archical model with it. Which is easier to use and navigate?

Answer 3.5

This exercise is very straightforward and is meant to provide practice in the organiz-
ing of such parametric requirements, as well as their representation in the model.
In software-only projects, such requirements are frequently ignored, but in systems
projects, they must be represented and tracked. Note that although this is created

as a “use case diagram,” it actually contains no use cases!

Identifying Parametric Requirements
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Figure 8.8 Coyote UAV system parametric requirements

Answer 3.6 Capturing Quality of Service Requirements

QoS requirements are a kind of constraint that is applied to another requirement
or to a use case. In real-time systems, QoS requirements are crucial because they
represent quantitative requirements such as performance, throughput, and band-
width—issues vital to any real-time system. In this system, the problem statement
identifies a number of QoS requirements around the operation of the vehicle, such
as maximum altitude, maximum speed, cruise speed, and so on. If the requirement
is not operational, then it should be placed in the UAV_Parametrics package but
if they are operational then they should relate to the appropriate use case. In this
case, this is for the Fly UAV use case. I created a use-case diagram and put the
previously defined Fly UAV use case on it and added the QoS requirements to it.
They relate to the use case using the «qualifies» stereotype of dependency. This is

shown in Figure 8.9.
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Figure 8.9 QoS requirements

Answer 3.7 Operational View: Identifying

Traffic Light Scenarios

The use case selected for this exercise was the Response Cycle Mode use case. In this

use case, the system runs a fixed cycle mode except when a vehicle or pedestrian signals

to use the intersection. Many different scenarios suggest themselves, such as:

No traffic (fixed cycles only)
Vehicle approaches from road B when road A has green

Vehicle approaches from road B when road A has green and primary pedestrian
light is WALK

Vehicle approaches from road B when road A has green for its turn light

Vehicle approaches from road B when road A has green for its turn light and a
pedestrian is waiting to walk parallel with road A

Pedestrian approaches from road B when road A has green
Pedestrian approaches from road A when road A has green
Vehicle approaches from road A to turn when road A has green

Vehicle approaches from road B when road A has green; once road A turns yel-

low, a pedestrian approaches on road A
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* Vehicle approaches from road B when road A has green; once road A turns yel-

low, a vehicle approach on road A

Then, of course, there’s dealing with emergency and priority vehicles, system
faults, and so on. One can easily think of a few dozen scenarios that show different

actor-system interactions entirely contained within this use case.

To answer the problem posed, we only need to construct three scenarios. In our

answer, we will elucidate the following scenarios:
*  No traffic (fixed cycles only)

* Vehicle approaches from road B when road A has green and primary pedestrian
light is WALK

* Dedestrian approaches from road B when road A has green

There are some interesting things even in the simple, no-traffic scenario, shown
in Figure 8.10. First, note that the “system” is represented with the use case as a
lifeline. This is perfectly reasonable and it can be interpreted as “the system execut-
ing the use case.” Some people find that putting a use case here is counterintuitive,
and so they prefer to use the «system» object as the lifeline. This is done in the third
scenario; however, the meaning is equivalent. In either case, the lifeline stands for
the system executing the use case.

Next, note that the actors in the scenario match the actors from the use-case
diagram, shown in Figure 8.3. Because the Responsive Cycle Mode is a specialized
form of the Manage Traffic use case, it inherits the actors used by the latter. To create
the empty scenario, the use case and the actors were dragged from the Rhapsody
browser onto a blank scenario diagram and then the details of the scenario were
added. Because the scenario is an exemplar, it refers to specific actor instances. There
are two vehicle actors, one for the primary direction and one for the secondary direc-
tion. Similarly, there are two pedestrian actors. In this first simple scenario, the system
just provides autonomous behavior based on time, so we don’t really need the actors
to be shown on the diagram. However, we will need them for the other scenarios so
I've added there here so that the structure is the same for all of the scenarios.

Another aspect to notice is the modeling of time. Some modelers put Time as
an actor, which I believe reflects faulty reasoning. Time is not an object from which
one receives messages. Instead, it is a part of the infrastructure of the universe. Inside
the system, we will ultimately have timer objects that provide explicit messages to
indicate time outs, so that these timeout messages are shown as a “message to self.”
I find that a much more useful representation of time. Rhapsody provides a special
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icon for a timeout, a message to self that originates from a small box placed on
the lifeline. To show a cancelled timeout, the message line is drawn with a dashed
line. The hexagons in the figure are a UML 2.0 feature called condition marks,
which shows the condition of the system. They are optional but they are included
in the first two scenarios because I believe they clarify the scenario. Compare these
scenarios with the third and make your own decision as to whether they clarify or
obfuscate the scenario.
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Figure 8.10 Traffic light Scenario 1

The first scenario is useful because it shows a very reasonable example of system
behavior in the Responsive Cycle Mode: what happens when there is no traffic. A

more interesting example is shown in the next scenario, shown in Figure 8.11.

The final scenario in this section occurs when a pedestrian comes from the
secondary road when the primary road has green. This scenario is represented a
bit differently than the previous two just to show the possibilities. First, the main
lifeline in the middle is the «system» object rather than the use case. As previously
mentioned, using the use case or the system object is a personal preference. Secondly,
the conditional marks are not shown in the use case. Conditional marks can add

clarity but they can also obscure the flow of the scenario if overused.
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Figure 8.11 Traffic light Scenario 2
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Figure 8.12 Traffic light Scenario 3

Answer 3.8 Operational View: CUAVS Optical
Surveillance Scenarios

These scenarios for the Perform Optical Surveillance use case will seem a bit “high
level” because we haven’t identified the internal architecture of the CUAV and its
payload. Nevertheless, we can still see how we expect the payload operator (in charge
of managing the video camera on the CUAV) to interact with the system. In the
next chapter, we will create a system architecture for the CUAVS and elaborate these
scenarios to include that level of detail. For now, however, the CUAVS is a black
box that interacts with various identified actors.

The first scenario, in Figure 8.13, shows manual movement of the camera in direct
response to commands from the Payload Operator. First, the camera is enabled. Once
enabled, the camera begins to transmit video at 30 frames-per-second at a resolu-
tion of 640 x 480. The command processing to move the camera is independently
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Figure 8.13 CUAV Scenario 1

processed from the image acquisition. This is shown with the parallel interaction
fragment operator. The image acquisition occurs repeatedly until the camera is
disabled, as shown with the loop interaction fragment operator.

In the second scenario, shown in Figure 8.14, automatic tracking of a target
is shown. In this example, the Payload Operator moves the camera around until
an “interesting” area is shown. He then selects a portion of the visual display and
commands the system to identify targets within that area. The system identifies two
targets (something that looks like a tank and something that looks like a building).
These are highlighted in the visual frame and the potential targets are given target
IDs. The operator then selects the target ID for the tank and commands the system
to track it. As the tank moves around, the camera automatically adjusts to follow the
tank’s movements. At the end of the scenario, the operator commands the system

to return to manual tracking operation.

The last scenario, shown in Figure 8.15, involves the operator selecting an area,
centering it, and then zooming in. Once zoomed in 300%, he pans around, even-
tually deciding there is nothing of interest and so resets the zoom level to normal

(100%).
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Answer 3.9 Specification View: Use-Case Descriptions

This problem should pose no difficulties for the reader. The purpose of the problem
is just to provide an opportunity to actually create a use-case description. Use-case
descriptions are important because they provide necessary documentation for the
understanding of the use case. Remember, just because you're building a model
doesn’t mean that you don't need description and comments!
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Figure 8.16 Roadrunner use-case description
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Figure 8.17 Coyote UAV use-case description

Answer 3.10 Specification View: Capturing
Complex Requirements

The first part of this problem should be straightforward and is meant to be a gentle
introduction to the power that state machines bring to the requirements-capturing
process. This behavior can be expressed with three states—one to provide a delay
before you start the flashing (to make sure vehicles in the intersection when this
mode is initiated can clear the intersection), one for flashing “on” and one for flash-

«

ing “off”. The transitions between the states are all based on time.

The second state machine is significantly more complex. In order to better
understand it, it will be incrementally constructed using the hint provided in the
problem statement. The incremental approach—solve one part of the problem and
get it to work before adding more complexity—is one that I recommend for all
modeling, but especially when the going gets complex. Too many modelers fail in
their efforts because they wait too long before they try to get the model executing.
By solving the problem in small steps and demonstrating that the solution works via
execution, we are implementing the “nanocycle” of the Harmony process, described
in Chapter 2. This enables us to achieve a correct solution much more efficiently
than the more common OGIHTW approach to modeling.?

1

Oh God I Hope This Works. In my experience, prayer might be a wonderful thing, but it is a sub-
optimal engineering approach!
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Figure 8.18 Use-case state machine 1

The first step is to get the basic fixed cycle mode behavior working. This is shown
in Figure 8.19. See, now, that’s not too hard, is it? While working this problem, I
first did the statechart in the figure without and-states, using the same state names
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Figure 8.19 Basic fixed cycle mode
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as in the figure. Although the no-and-state version was slightly simpler, it appeared
that it would be more difficult to incrementally add the turn lane and pedestrian
traffic later, so I decided to go with the and-state version. Notice that the two and-
states coordinate on the basis of propagated events. A propagated event is an event
generated in one statechart (or and-state) as a result of accepting an event. The latter
event is then consumed by the other statechart (or and-state).

The next step is to add turn lanes. While I'll show this as a fait accompli, in real-
ity I constructed this by first adding the latches, executing that version, and then
adding the turn lanes.

To manage the complexity of the fixed cycle mode with the turn lanes added, I
used submachines, one for the primary traffic and another for the secondary. The
top level state machine for this is shown in Figure 8.20. The next two figures, Fig-
ure 8.21 and Figure 8.22, show the submachines for the composite states shown
in the figure. These submachines both contain and-states to concurrently manage
the through and turn traffic and the latch for the turn lane. The and-states ensure
that the nested state machines execute independently except for explicitly stated
synchronization points. These occur with a combination of propagated events (as in
the first stage of the solution) and the use of guards to take the appropriate transition
branch if there is turn traffic waiting.
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= Step 2: through traffic and turn
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Figure 8.20 Fixed cycle mode with turn lanes
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Figure 8.22 Fixed cycle mode secondary submachine
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Once this model executes properly, I can move on to add the remaining features.
In the last step, I added the pedestrian traffic management. This is shown as a set
of diagrams. Submachines are used to manage the complexity by distributing it
across multiple diagrams. The high-level view is the same as Figure 8.20. The sub-
machine for the Manage Primary Traffic is shown in Figure 8.23. The processing
for the primary turn and pedestrian traffic is specified in the submachines defined
in this state.

‘ ManagcPrimaryTraffic

RedRed1 —

tm(PrimaryYellowTime)/
setPnmaryRed),
WailingForSRed | GEN(evPRed)

J—.

tm(anaryi\R\ ime)

- IS_IN(PnmarylumWaiting)}
| WaittorP TurnCycle L GEN(evPTGreen)

) %
[ ] i - \\
7 [else)!
o GEN(evPTurnDone)
—————— g [
GreenRed &) — YellowRed )
— .
“», setPrimary(Green) tm{PrimaryGreenTime)[IS_IN(PrimaryDontWalk)] & setPrimary(Yellow)

evPrimaryPedestrianDone

| oy
|
[ PrimaryTurnProcessing W |
| |
o |
| )
| {
|

Primary Processing Nnta/lha use of
submachines within the and-states as
a means to manage the state machine
complexity.

Figure 8.23 Manage primary traffic

The turn processing is the same in step three; this is shown in the submachine
for the Primary Turn Processing State, in Figure 8.24.

And finally, the primary pedestrian processing is shown in Figure 8.25. It uses the
same latch pattern as the turn light processing and communicates with the primary
through traffic processing by sending the evPrimaryPedestrianDone event, which
enables the green through light to go to yellow.

The secondary traffic works much the same as the primary. Note that while the
state machines look (and, to be fair, are to some degree) complex, it is neverthe-
less much clearer than the equivalent voluminous text of equal completeness and
accuracy would be.



Specifying Requirements: Answers 237

PrimaryTurnProcessing ‘

*—

Primary Turnidie

" PTumGroen | evPTGreen/selPTumn(Green) t
Bin

tm(Primary TurnGreenTime —im{PTurnYcllowTime)/
selPTurn(Yellow) - setPTum(Red);

GEN(evPTurmDone); PrimaryTurnWaiting

——

~

[
|
|
|
|
|
|
\
\
\
PTumYellow | evPrimTurmClear evPrimTumArrive
~
\
\
\
\
\
\
\
\
\
L

Figure 8.24 Primary turn processing

| PrimaryPedestrianProcessing |

o< PrimaryPedestrianLight PrimaryPedestrianLatch

Q'

_— PrimaryDontWalk @

"% selPrimaryWalk(DoniWalk),

== J PrimaryPedestrianidic
evi’TDonellS_IN('nmaryl*edestnan¥ailing)]
A
evPrimaryPedestrianClear
PrimaryWalk )
& setPrimaryWalk(Walk);
PrimaryPedestrianWaiting

im(FlashingWalkTime)/

GEN(evPrimaryPedestrianDone); tm(WalkTime)

GEN(evPrimaryPedestrianClear);

PrimaryFlashingDonlWalk @

™25 seiPrimany Walk (FlashingDon Walk),

I
|
I
I
|
|
\
\
[
\
I
I
r
|
|
\
I
I
|
|
I
\
\
\
\
|

-

evPrimaryPedestrianArrive

Figure 8.25 Primary pedestrian processing

Additional Questions

* Fill out the statecharts for the SEQ (sequential) turn mode using the statecharts

for the SIM mode.

* Try doing the SEQ model solution without the use of and-states.
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Answer 3.11 Operational to Specification View:

Capturing Operational Contracts

In this exercise, you were given several distinct tasks to accomplish:

1.

Draw the block diagram representing the use case, the actor(s), and the
interfaces between them.

The messages that come from the actor(s) must be collected into provided
interfaces on the appropriate port of the use-case block and required interfaces
on the actor. Messages sent to the actor(s) must be collected into required
interfaces on the use-case block and provided interfaces on the actor port.

For each service (operation) the system provides, specify pre- and post-condi-

tions and the types and ranges of parameters, if necessary.

Construct a use-case activity diagram representing all of the scenarios previ-

ously specified for the use case.

Define a state machine for the use-case block that is consistent with the set

of scenarios.

Step 1: Draw the Block Diagram

Figure 8.26 shows the block diagram representing the Perform Optical Surveil-

lance use case. Note that the use case and actor have both become blocks (objects),

complete with ports and interfaces. The use-case block provides one interface,

UC_PerformOpticalSurveillance |

1 ucPerformOpticalSurveillance

iOpticalServices iOpticalServices

aPayloadOperator BidentifyTarget():void

opticalPort

] S enableCamera():void
S disableCamera():void

(8 herezaVideoFrame(v.VideoFrameType).void

iOpticalResults & incrementalMove(dx:int, dy:int):void
opficaiResuts B selectArea(x1:int.y1:int x2:int,y2:int):v...

BtargetList(list: TargetListType ):void

B setCenter(ex:int cyint):void
EtrackTarget(id:|DType):void
= zoom(zoomLevel:double):void

-1 B enableCamera().void

- - [ incrementalMove():void
A 1% 2 [ trackingMove():void
‘The video camera shall [trackTarget():void

tion itself to (0,0 - i i
position itself to (0,0) upon -~ [ disableCamera():void

initialization (i.e. straight - fdisan X
downward) P [ identifyTarget():void
A [ setCenter():void

s e

The video camera shall provide a o) /
maximum slew rate of 10 i i
degrees per second.

e The video camera shall provide a

2 5 < position range of 80 degrees fore
The video camera shall provide a and at and 80 degrees port and

paositioning accuracy of 0.1 starboard
degrees

Figure 8.26 Use-case black-box diagram
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iOpticalServices; this same interface is required by the actor. Similarly, for messages
coming from the use-case block to the actor, another interface, iOpticalResults is
required by the use-case block and provided by the actor. Interfaces used in this way
are called interface conjugate pairs; that is, when the interfaces offered by one port
are required by the other, and vice versa.

Remember that the interfaces specify the services provided or required by some ele-
ment. By providing a set of services in the iOpticalServices interface, the use-case block
is declaring that it promises to perform those activities. By requiring the other interface,
iOpticalResults, it declares that it needs the actor to provide those services.

The operations are shown inside the blocks with a key symbol used to indicate
“protected” visibility and no symbol to indicate that they are public.

Step 2: Define the Interfaces

The interfaces themselves are shown in Figure 8.27. Of course, they only contain the
public operations for the use-case block and the actor. Specification of the interfaces
was a straightforward job of selecting the public operations defined on the block

and entering them as part of the interface.

«Interface»
iOpticalServices

«Interfacer

iOpticalResults

H disableCamera():void

& herezaVideoFrame(v:VideoFrame Type):void g enableCamera():void

 targetList(list: TargetListType):void & identifyTarget():void

| incrementalMove(dx:int dy:int):void

[ selectArea(x 1:int,y1:int, x2:int y2:int):void
= setCenter(cx:int,cy:int):void

H trackTarget(id:IDType):void

& zoom(zoomLevel:double):void

Figure 8.27 Use-case interfaces

Step 3: Defining Pre- and Post-Conditions for the Interfaces

The next step is to iterate over each of the operations in the interface and specify
the pre- and post-conditions. Pre-conditions are things that must be true prior to
the invocation of the service. Post-conditions are things that are guaranteed to be
true by the service provider upon completion of the service.

The common repository for such information is in the description field provided
by Rhapsody for each operation. However, it is more parsimonious for our purpose
here to collect them all in a table (See Table 8.1).



Table 8.1 Interface pre- and post-conditions

Interface Service Pre-condition Post-condition
iOpticalResults | herzaVideoFrame | Video camera is operating Frame is stored in frame buffer for viewing and analysis
targetList Targeting enabled; identify Target List of targets is stored for analysis
command previously sent
iOpticalServices | disableCamera None Camera is returned to starting position and shut down
enableCamera None Camera is powered and a Power On Self Test is performed, If
errors occur, then error codes are sent; otherwise, the camera is
initialized and centered.
identifyTarget Camera is operating and search area or | System identifies a list of targets, each with a unique target ID.
route has been specified.
incrementalMove | Camera is operating. If the incremental move is within the range of the gimbaled
camera mounting, then the camera is moved incrementally +x
units and +y units. If the commanded position is out of range,
then the camera will move to the closest valid position.
selectArea Camera is enabled If the area is within the limits of the system, then the search
area is defined. If not, then an error is sent and the closest
matching search area will be selected.
setCenter Camera is enabled If specified point is in range, the point is set to the be the
search center. If not, an error is returned and the center
remains unchanged.
trackTarget Camera is on and potential targets If the target ID is known to the system, then it will track that
have been tagged with IDs target within the center of the visual field with a combination
of flight maneuvers and camera gimbal movement, depending
on the state of the CAUV.
zoom Camera is on. If the zoom parameter is within bounds, then the camera shall

zoom in or out, auto adjusting focus. If the zoom level is out of
range, then the camera shall clip at the minimum or maximum
zoom, whichever is closer. The units are percentage, so that a
parameter value of 300 means 3x magnification, 50 means 0.5
magnification.

g Joydey) ove
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Step 4: Construct a Use-Case Activity Diagram Representing All
of the Scenarios Previously Specified for the Use Case

It is useful to have an overview of all the different scenarios at once. Since a sequence
diagram represents a particular scenario, how can this overview be represented?
Although in UML it is theoretically possible with the interaction fragment opera-
tors to represent all branch and concurrent points, it is not generally practical to do
so. One easy way is to use an activity diagram to sum up all the messages that can
occur. If two scenarios depart at some particular branch point, this can be easily

represented using the activity diagram branch operator.

For the set of scenarios defined for this use case, the derived activity diagram is

shown in Figure 8.28.

B
Activity Diagram for Use Case

enable A e Case
Camera Perform Optical Surveillance”
o this is 3 disgram connector used

! ta "beautify” the diagram by minimizing line
crossing. The “inlet” matching connector is at
" the battom of the diagram
_— ,

[ VideoCamera =/
zoom ] [ setCenter }
Y 3

POS| toWait
[cmd == poomCmd]  [cmd == selCentertmd]

video
Camera
Initialization

Wait for
Command

Create Video
Frame
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< cmd >
.

[emd == tragkTargatCmd]
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identify track Target
: Target
[emd == salectAreaCmd]

solect Arca
video .y

disable
Camera
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next i
\llsckmg/Sf
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R
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Aulu felse]
[cameralsinactive()] select Tagel
s i to Track
<.) video /I:I EE\) Yy
- Camera Sl disable
Shut Down ol Taigel
Jolso] Tiacking
Send |
Target List

Figure 8.28 Derived use-case activity diagram

Step 5: Define a State Machine for the Use-Case Block that is
Consistent with the Set of Scenarios

The last task from the problem statement was to construct a statechart for the use-
case block that invoked the behaviors under the right circumstances, at the right
time, and in the right order. Note that the activity diagram is recommended to be
a documentation-only thing and is used to specify the user case per se; however,
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the statechart is executable and specifies the use-case block. The advantage of
using a statechart over an activity diagram is that the former can use events such
as timeouts, arrival of commands, etc. to trigger transitions. This isn't possible in
UML 2.0 activity diagrams.
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Figure 8.29 Use-case block statechart

A powerful aspect of using statecharts in this way (namely, to represent scenarios) is
that the statechart fully specifies the allowable sequences and shows which sequences are
disallowed. A single scenario cannot do that, but a statechart can. In this case, shown
in Figure 8.29, we show logical concurrency with and-states.’ Thus, we see that track-
ing is independent from, for example, moving of the gimbaled camera and managing
optical parameters such as the zoom level. How target tracking takes place is also much

more explicitly stated in the statechart than in the more informal sequence diagrams.

References

[1] Douglass, Bruce Powel, Real-Time UML, Third Edition: Advances in the UML
for Real-Time Systems, Addison-Wesley, 2004.

(2] Douglass, Bruce Powel, Doing Hard time: Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns, Addison-Wesley, 1999.

3 However, this does not imply or constrain the internal concurrency architecture. Here we are captur-

ing things that are independent in their order of execution but there are an infinite number of ways
that can map to a set of internal OS threads.
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Answer 4.1 Organizing the Systems Model

This exercise has two parts, one for each of the two systems we’re working with in
this book. The first answer shows the organization of the Roadrunner Traffic Light
Control System. This is shown in both model browser and package diagram views.

First, in Figure 9.1, we see a package diagram showing the set of packages used
to organize the system as a whole. The mission for each package is stated in a brief
comment. In the next figure, Figure 9.2, the details of the systems model area are
shown. Note that the package for the system elements is named “_System”. This is
so that it comes first in alphabetical order in the browser view.!

_System Builds e tnmen

Holds elements to be

shared among subsystem

_System package holds all information —
Domains teams

at the system level, except for subsystem
interfaces which are in the Commen
package

Holds the architecture of each

build in a separate nested package Contains classes and types to be shared

among subsystem teams, organized into
nested subpackages, each of which holds
alements from a different subject matter, or

“domain”, such as GUI, hardware, comm,
Subsystems etc.

Contains one nested package per subsystem -

Subsystem1 | Subsysteminterfaces
|

[

|

Helds all the elements spacific

- - | Holds the interface specifications of
—| to a single subsystem

| allthe subsystems.

One (or mora) class diagram I
per use case realization (i.e. | |
collaboration) |

Regquirements

Holds subsystem-level requirements,
including use cases, sequence diagrams,
state machines, etc. May have nested
packages, similar to the _System package

Figure 9.1 Roadrunner overall model organization

' This isn’t strictly necessary in Rhapsody because it gives you control over package ordering in the

browser, but it is a personal habit of mine.

243
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_System

_System package holds all information at the system
level, except for the subsystem Interfaces, which are
held in the common area.

RequirementsModel |

NenOperationalRequirements
Requirements
Non-operational requirements hold
primarily requirements elements. Requirements package holds the
that are parametric (e.g. heat, requirements elemants
welght, color)

OperatlonalRequirements

Operational requirements are

organized around use cases
_System::RequirementsModel

helds the various system-level
requirements information

TestVectors

SystemsArchitecture

Test vector package holds the sequence
diagrams and activity diagrams
representing system-evel tests

Systems architecture holds the set of
subsystems and the subsystem
diagram showing how they relate

Figure 9.2 Roadrunner systems area organization

The Requirements package nested inside the RequirementsModel package of
Figure 9.2 holds the individual requirements statements that trace to use case or
more detailed operational elements; these requirements statements are represented
as SysML requirements elements. The OperationalRequirements package holds the
use cases and their detailed specifications with state machines, activity diagrams, and
sequence diagrams. The NonOperationalRequirements package holds requirements
that trace to the System object and other nonoperational constructs.

The next two figures show the same information but in the browser tree format.
The latter is preferable for dynamically navigating through your model but both

views are useful.
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Figure 9.3 Roadrunner model organization browser view

The second part of the exercise is to structure the Coyote UAV model into a set
of interacting models along the guidelines set out in Chapter 4. The Coyote UAV
system is two or three orders of magnitude larger in scope than the Roadrunner

system and, in order to be effective, it must be managed in multiple models:
*  Systems Model

e Common Model

* (n) Subsystem Models

The systems model will be used for system level requirements and architecture
capture. This model has separate packages for subsystems because it is those very
packages that will be handed off to the subsystem teams when the project transi-
tions from systems engineering to subsystem development. These packages hold
the “software and hardware specification” models that will serve as the starting
basis for the elaborated subsystem models. They will hold only requirements and
requirements-related elements. The internal structure of the subsystem models will
be handled by the subsystem teams in the subsystem models directly.
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Figure 9.4 Roadrunner systems area model organization browser view
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The common model will hold the elements to be shared among the subsystem
teams, such as the subsystem interfaces and class specifications that span multiple
domains (more on domains later in this chapter). Lastly, for each subsystem team,
there is a separate subsystem model that can be thought of as a systems-model-in-
the-small. That is, the subsystem model is organized along the same lines and using
the same principles as the system model. It has a package for subsystem requirements
and a package for the internals of the subsystem, specified primarily as collaborations
among the objects held within the subsystem.

Central to the notion of decomposition of a system into a set of cooperating mod-
els are the notions of how to share these more-or-less-independent-but-collaborating
models. Models may be shared either by value or by reference. When you share a
model by value, the client imports a copy of the model. The client is then free to
manipulate the copy, and add and delete elements to that copy without it affecting
the original. If we share a model by reference, then the client copy is read-only and
changes in the original model are reflected in the imported copy automatically. In
Rhapsody, both are done with the “Add to Model” feature. When invoked, you
are permitted to load an entire model, a set of packages, or an individual element,
in either “by value” or “by reference” flavors. For models that you are expected to
elaborate—such as the subsystem models—importing the model by value makes
the most sense. In models where you want to reuse existing model elements, such
as from a model that has classes to be used in multiple subsystems, importing the
model by reference is most appropriate.

To this end, we've set up a set of models:
e Systems Model
e Builds Model
e  Common Model
* (n) Subsystem Models

The Systems model is almost exactly the _Systems package in the Roadrunner
solution. It differs primarily in that, while it has a package for each subsystem, the
only contents of that package are requirements and requirements-related elements
(use cases, etc.). It is not meant to contain the subsystem design—that is the job
for the subsystem team to create in their own separate model.

The Builds model may be thought of as a “master” model in that it has very little
of its own but imports all the subsystem models together to make a coherent execut-
able instance of the system (aka, “prototype”). Early builds may be incomplete in
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the sense that not all subsystems are represented, the final electronic or mechanical
hardware isn't used, or not all of the functionality of the various subsystems may be
present. Nevertheless, even these early builds execute and can be validated. Over time,
the later builds become increasingly complete and use more of the final hardware.

The Common model meets the same need as the Common package in the
monolithic model solution, as a place where reusable elements can be placed so that
they are accessible to the other models that wish to use them.

Lastly, the subsystem models are begun by importing the subsystem specifica-
tions from the Systems model. These models are then independently elaborated and

detailed as their analysis and design processes proceed.

The CUAV Systems Nodel

The Systems model is shown in Figure 9.5 (package view) and Figure 9.6 (browser

view).

B
Coyote UAV Systems Engincening
Model Organization Package

Diagram Requremenishadel |
OperalionalRequirements
One package per usc case, detailing the
use case, in both black and white box
forms
Architecture 1C_PerfarmOpticalSurveillance ‘
HolS e SohsyEter Requrements BB_PerformOplicalSurveilance |
architecture for the UAV ‘
For non-operational
and non-paranelic
requirements WD_PerformOpticalSurveillance ‘
eparameicss |
- SystemParametrics
SubsystemSpecifications i |
For parametric
Contains a set of packages, one per «parametricaa requirements
subsystem, organizing the requirements CMPCS Parametrice
and aperational contracts for that specific T T
subsystem

<parametricas
Payload Parametrics
Subsysternt

Payload parametic
requirements

An example subsystem's
reguirements, specifications,
opcrational contracts, and “eparameticas
responsibiltics. UAV_Parametrics

requirements

UAV parametric |

Figure 9.5 CUAV Systems model package diagram view

The Common model is shown in Figure 9.7.

Lastly, a sample subsystem model (only one, as we havent yet identified the
subsystem architecture) is shown in Figure 9.8. Of course, as we elaborate the
architecture, there will be one of these subsystem models for each and every identi-
fied subsystem.
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Figure 9.6 CUAV System model brower view

Coyote Common Model Structure

Domains SubsystemArchitecture ‘

The Domains package contains subpackages
organized around "domains of expertise” - that
is, independent subjects, such as User
Inteface, Hardware, Alann Management, data
management, communications, and so on
Every shared type or class is contained within
a single domain.

Subsysteminterfaces

The Subsystem Intefaces package contains the
interfaces offered andlor required between
subsystems. Normally, these interfaces define the
contracts of the ports on the subsystems.

The Subsystems Architecture package contains
the Subsystem classes themselves (and their
ports and interfaces). They are represented in the
common model so that the interface to those
elements can be referenced by any client of the
senices provided by that subsystem.

[ith

Note: It is assumed that clients ofthe common
model will load some or all ofthe elements of this
model by reference, so that changes made in the
common model will be reflected in the users of
those classes, interfaces, and types.

Figure 9.7 CUAV Common model
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Subsystem Model Organization

Mission: Show the logical architecture (ie model structure) for
the subsystem model

_Requirements Architecture |
. o The hil & package contains sub: level

This package is imported fom the System architectural elements (objects, classes, types, and interfaces)

Engineering Model. Within this model, it may be as well as diagrams relating to the different views - component

elaborated to Mechanical, Chemical, Electronic, and intemal subsystem architecture, distribution architecture,

and Software Requirements submaodels, based on denk t archi (to different disciplines), safety &

: . ploy P 3

the Vallu{:almnrc'frerqulremenls to the diifferent reliabilty architecture, and cencurrency & resource

engineering disciplines. management architecture. These are represented primarily as
class or structure diagrams with other supporting diagrams as
necessary.

—|Cullahoraliuns FromCommonModel

The FromCommonModel Package holds the elements used
from the common model. These subpackages are added by
reference into the subsystem model where they can be used
This package contains the nested packages - Domains (or a
subsystem of the packages contained therein), Subsystem
Architecture, and Subsystem Interfaces.

The Collaborations Package organizes the
analysis and design collaborations, one per
subsystem use case.

Figure 9.8 CUAV subsystem model

Answer 4.2 Subsystem Identification

The Roadrunner Traffic Light Control System is a fairly small system so the system
architecture diagram is straightforward. I used a UML structure diagram to represent
the system architecture. Note the use of stereotypes «System» and «Subsystem» to
mark the architectural elements. This is completely optional but I find it useful to
clarify the usage of elements in the model. Note that none of the elements shown
in Figure 9.9 are “primitive”—they are all composites containing a possibly rich set

of internal parts.

The ports between the Roadrunner subsystems are not (yet) typed by interfaces,
but the “need lines” among the elements are straightforward. One can certainly
imagine these connections are required for system operation and with a little thought
one could definitely define a set of services provided and required across these ports.
The definition of these interfaces is dealt with in an exercise later in this chapter.

Notice the set of subsystems for the traffic light control system in Figure 9.9.
There is a different subsystem for the primary vehicle light assembly (P_Vehicle-
LightAssembly) than for the secondary road (S_VehicleLightAssembly). The two
subsystems are most likely identical in their structure and behavior but play differ-
ent roles. The model shown uses a multiplicity of 1 with each, but an alternative
representation would have been to have a single subsystem part for this role called
VehicleLightAssembly and have a multiplicity of 2. I selected the former approach

because the roles between the two subsystems are different to their client (the Inter-
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Figure 9.9 Roadrunner system architecture diagram

section Controller) and using different connections made that distinction clearer,

but either approach could be used.”

The Coyote Unmanned Air Vehicle is about two orders of magnitude larger
in scope than the traffic light control system. For this reason, the architecture is
depicted on a set of diagrams rather than a single diagram. The first of these, Figure
9.10, shows the interconnected systems comprising the CUAV conglomerate. We
can see that there are three kinds of systems identified: the ground systems (for
mission planning and mission control), the CUAV vehicle, and the payloads. There
are four different payloads shown: missiles, forward-looking infrared (FLIR), video,
and synthetic aperture radar (SAR). Each of these is stereotyped «System» and will
be decomposed into separate subsystem diagrams for each. While it is possible to
put all this information in a single diagram, it makes that diagram far more difficult

to comprehend.

Figure 9.10 is a class diagram, rather than the slightly more restrictive structure

diagram, just to show an alternative means to depict architecture. Since it depicts

2 As a general guideline, when a set of objects plays the same role with respect to a subject object (they
are treated more or less as the same), then I use a single association with * multiplicity. When a set of
objects fulfill different roles, then I use a different association (to the same class) for each role.
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Figure 9.10 CUAV system architecture diagram

classes, not objects, links cannot be drawn between the ports.? Therefore, informa-
tion flows are shown connecting the ports. The same contents shown in a structure
diagram are shown in Figure 9.11, but in this case the primary architectural elements
are parts of the overall project, and so can be linked with connectors.

The enclosing structure CUAV_Project is stereotyped «SystemOfSystems» to
indicate that it is “larger” than the contained systems. Because this is a structure dia-
gram, the internal parts are instance roles, and so can be linked via connectors, rather
than having to reply on information flows. We can also indicate multiplicity on the
parts. The missile_Assembly, FLIR_Assembly, video_Assembly, and radar_Assembly
parts are limited to at most one per vehicle but have * multiplicity because there
may be multiple vehicles active in the same system configuration.

In the previous figures, the payloads were assigned «System» stereotypes and
are modeled at the same level of abstraction as the vehicle and the ground station.
A case can be made for making them subsystems of the vehicle. After all, they are
mounted on and deployed from the vehicle. While it would certainly not be incor-
rect to model the payloads in that way, in this case I did not. The reason is that the

Links can only be drawn between objects and between ports on objects; associations can be drawn
between classes, but not between ports in UML 2.0. A link is, of course, an instance of an associa-
tion. Links could have been drawn between the elements on the diagram had the classes on the dia-
gram been instantiated into objects.
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Figure 9.11 CUAV system architecture as structure diagram

payloads are removable, replaceable, and possibly mountable on different vehicles,
some of which may not even be within this project. To make their reuse even easier
to conceptualize, I decided to make them separate systems, rather than subsystems
of the vehicle.

The systems defined within the CUAV project must be decomposed into their
primary subsystems as well. This is done in the following set of diagrams. Figure 9.12
shows the subsystem architecture of the ground station. Note that the Ground
Datalink subsystem and the Data Storage subsystem are singletons (i.e., have a
single instance) within the ground station but there are up to four manned stations,
and each of these has two stations within them, one for controlling a UAV and one
for receiving and processing the reconnaissance data. The association among the
manned stations allows them to be slaved together into a single station for low-
vigilance monitoring.

The guidelines used to link together the subsystems are simple. If one subsystem
requires services or data from another, a link is emplaced between them. All links (at

the subsystem level) employ ports as a means to help ensure strong encapsulation.
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Figure 9.12 CUAV ground station subsystem architecture

Figure 9.13 shows the vehicle itself. It is organized into a set of subsystems as
well. The subsystems are summarized in Table 9.1.

Table 9.1 CUAV subsystem summary

Vehicle Links with Purpose
Subsystem

Airborne High-speed external port Links vehicle to ground station for both

Datalink Low-speed external port low-speed (command) data and status
Flight Management and high-speed data. Also unmarshalls
Fire Control messages received over the communi-
Attitude Control cations links and delivers them to the
Engine Control appropriate subsystem.
Navigation
Reconnaissance

Attitude Airborne Datalink Controls and monitors the attitude

Control Mechanical Hydraulics (roll, pitch, yaw) of the vehicle by com-
Flight Management mands position changes in the vehicle’s

control surfaces.
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Table 9.1 CUAV subsystem summary (continued)

Vehicle Links with Purpose

Subsystem
Engine Airborne Datalink Controls engine output and monitors
Control Flight Management engine status.

Fire Control | Airborne Datalink Manages on-board weapons systems,

Targeting
Missile Command external port
Missile Data external port

both status and control, including the
delivery of fly-by-wire and fire-and-
forget Hellfire missiles.

Flight Airborne Datalink Manages general flight, which can be
Management | Attitude Control fully or partially automated or may be
Engine Control managed completely from the ground.
Mechanical Hydraulics
Navigation
Fuel Management
Fuel Flight Management Monitors fuel status and shunts fuel as
Management necessary for weight balance.
Mechanical | Attitude Control Provides direct control over air control
Hydraulics | Flight Management surfaces—wings, rudders, elevators, and
ailerons. Also used to control landing gear.
Navigation | Airborne Datalink Used for control and monitoring of
Flight Management position in the airspace. Also contains
navigation data and tools, such as digi-
tal maps and flight plans.
Reconnaissance | Airborne Datalink Gathers and processes reconnaissance
Management | Targeting data for both on-board target tracking
FLIR external port and for remote surveillance (transmitted
Optical external port to the ground station).
Radar external port
Targeting Fire Control Identifies and tracks targets of interest.

Reconnaissance Management
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Figure 9.13 CUAV vehicle subsystem architecture

The payloads are not broken down into their subsystems here. One reason is
that it is likely that a single team will be developing each of the payloads, so it is
less crucial to do that decomposition early. Secondly, the payloads are clearly less
complex than either the ground station or the vehicle.

One thing to note about the system-to-subsystem decomposition performed in
this answer: the subsystems themselves are multidisciplinary. That is, each subsystem
contains software, electronic, mechanical and possibly chemical engineering aspects.
That decomposition is discussed in a later problem in this chapter.

Answer 4.3 Mapping Operational Contracts into the
Subsystem Architecture

In the process of developing systems, the tradition is to first create a set of require-
ments. In the MDA/UML world, these requirements are organized into and around
use cases. Next, we define a system architecture. This has been addressed for both
sample problems in previous problems in this chapter. The next step is to map the
requirements into the various subsystems. This consists of two primary steps:

1. We must map the operational contracts (services) into the internal architecture.

2. We must group these services at the subsystem level into use cases.
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This problem deals with the first of these two steps. Conceptually it is a simple
process.* A use case is realized (i.e., “implemented by”) a set of collaborating system
elements. At the architectural level these are systems, subsystems, and components.
Each service at the outer-most system level (“system” level for the Roadrunner
Traffic Light Control System, and “system of systems” level for the Coyote UAV)
is decomposed into services provided by the various subsystems. In this step of the
process, we decompose the system-level services into subsystem-level services. We

represent these service invocations primarily as sequence diagrams messages.

Mechanically, the decomposition of the system services can be done “in place”
or by decomposing the use-case lifeline. By “in place,” we mean that the original
sequence diagram(s) are copied and the subsystem lifelines and messages are added.
This is only useful for small systems. For larger-scale subsystems, or systems with
more parts at the next level of abstraction down, it is better to use the lifeline on
the original sequence diagram as a reference to a more detailed sequence diagram;
this latter sequence diagram represents the interaction of the lifeline’s internal parts
in the very same scenario. This is a new UML 2.0 feature and is one of the most
important additions to the UML. In Rhapsody, creating the sequence diagram
representing the decomposed lifeline is easy—simply double click the lifeline to get
the “Features” dialog, and then select <new> in the “Decomposed” list control (or
select the name of an already existing sequence diagram). This creates (or selects)
the sequence diagram to be used as decomposition of the lifeline. To navigate to the
referenced sequence diagram is easy—simply select the lifeline in question, right-

click, and click on “Open reference sequence diagram.”

When you decompose a sequence-diagram lifeline, the first question that arises
is “How do I represent messages entering and leaving the sequence diagram?” The
most common way is to use the system border, a special lifeline that represents all
instances other than the ones explicitly shown. All messages entering or leaving the
nested sequence diagram go to or from that system border lifeline. If you visualize
the nested sequence diagram as being inside the boundaries of the lifeline on the
original SD, this is the same as saying the incoming messages are coming from the
“edge of the owner lifeline” and outgoing messages are sent to that same edge.

An alternative to using the system border is to copy the actors from the original

sequence diagram. If all the elements sending or receiving events are actors, it is

4 Although, remember the Law Of Douglass that states “The difference between theory and practice

is greater in practice than it is in theory!”
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perfectly fine to copy them into the nested sequence diagram if desired. This is
equivalent to the previous solution.

While other tools may work slightly differently, Rhapsody has an “analysis mode”
for sequence diagram editing. This is useful for white-boarding scenarios since noth-
ing is populated into the repository in this mode. When the scenario looks stable,
the sequence diagram can be turned into a “design mode” diagram that commits
the messages to the repository. In design mode, all the messages being received by
a lifeline (representing a classifier) become operations (for synchronous messages)
or events (for asynchronous messages) on that classifier.

First, let us work on the traffic light control system. The smarts in this system are
centered largely in the Intersection Controller subsystem (see Figure 9.9). The first
step is to take the sequence diagram for Scenario 2 and decompose the Responsive
Cycle Mode use case. That creates an empty sequence diagram that is referenced from
the original lifeline. Then open the new sequence diagram and drag the elements
(parts of the Roadrunner Traffic Light Control System object) onto the diagram
to create the lifelines. Add a system border lifeline for messages to enter and leave
the sequence diagram. Now, working from the original, for every message coming
from an actor to the use case lifeline, create a matching message from the system
border lifeline on the nested diagram to the appropriate lifeline. Similarly, for every
message from the use case lifeline to an actor, create a corresponding message from
some element in the nested sequence diagram to the system border. Add internal
messages among the elements as appropriate to glue the collaboration of these ele-
ments together. A nested sequence diagram for scenario 2 (Figure 4.3) is shown in
Figure 9.14. Similarly, the more detailed view for scenario 3 (Figure 4.4) is shown
in Figure 9.15.

So what does this mean to the subsystems? Once the messages are realized by
the subsystems, corresponding services (operations and events) are added to the
subsystems. In this particular case, we made the subsystems instances of classes,
and those realized messages become operations defined on those classes. Once that
is done, they can be added to the appropriate ports by collecting those services up
into interfaces that specify the contracts of the ports. In Figure 9.16, the interfaces
on the ports are not shown to minimize diagram clutter.

The traffic light controller is a relatively simple system, but the example illus-
trates the process of elaborating the services within the subsystems. In this case,
the interfaces between the subsystems are not complex but this clearly allocates
responsibilities to the architectural parts of the system. In Figure 9.16, I've added

some additional operations that show up in some other scenarios (such as using
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Figure 9.14 Roadrunner Scenario 2 subsystem details
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Scenario 3: Operational Contracts Mapped to Subsystems
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Figure 9.15 Roadrunner Scenario 3 subsystem details
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Figure 9.16 Roadrunner architecture with operations

the front-panel display for configuring the system and the transponder to detect
emergency vehicles) not shown in this chapter, to round out the interfaces among
the subsystems.

Let us now repeat the same process on the CUAV system. Of course, this is a
much larger system so we will need to use both forms of sequence-diagram decom-

position to manage the diagrammatic information.

We will start with looking at the interaction between the ground station (and
its Ground Datalink), the aircraft (and its Airborne Datalink) and one of the pay-
loads—in this case the video assembly. As stated in the original problem, we'll focus
on the Perform Area Search use case and, more specifically, on Scenario 1 shown in
Figure 4.7. Since that figure just references more elaborated sequence diagrams, we'll
start with Figure 4.8, which details how the aircraft takes off. In the more detailed
view shown in Figure 9.17, we will elaborate the Perform Area Search lifeline into
a nested sequence diagram.
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Figure 9.17 Perform area search Scenario 1 detail master

As with the previous example for the traffic control light, notice the messages
coming in from the actors are summarized by the system border (named ENV in
the figure) that connects the messages to the actors in the owning sequence diagram.
Also notice, as mentioned before, the detail is too long to reasonably put into a
single diagram, so interaction references are put into the scenario to hold much of
the detail: the first shows the detailed interactions for setting up the aircraft, and

the second shows the detail for taking off from the runway.

The first referenced interaction fragment is split across Figure 9.18 and

Figure 9.19.
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Figure 9.18 Setting up the aircraft detail (part A)
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Perform Area Search Scenario I: Aircraft Takes Off - Startup System Detail
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Figure 9.19 Setting up the aircraft detail (part B)
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As implied in the previous diagram, showing the more decomposed level of detail
tends to “explode” the information, so diagram and information management can
become more difficult. This is where UML 2.0’s decomposable sequence diagrams,
which imply navigable links to the nesting levels, are very useful. If desired, you may
add in hyperlinks to navigate backwards as well, but these must be added manually.
Keep in mind that, because interaction fragments may be referenced in more than
one place, you may need to create more than one such backward hyperlink. Such
a hyperlink is shown (in a comment) in the next figure, Figure 9.21. If you click
on that hyperlink in Rhapsody, the owning diagram opens. It is highly desirable to
add such navigation links while constructing large-scale models. It not only greatly
facilitates navigating through your model, but also adding them as you add diagrams
is far easier than adding them later as an afterthought.

As in the two previous diagrams (which are a single diagram in the tool) this dia-
gram is broken up across two figures as well for formatting purposes. In this case, the
breakpoint for splitting the diagram is between the two parallel regions of the diagram.
This is indicated with the dashed line within the parallel region of the figure.
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R R R R

4




266 Chapter 9

Perform Area Search Scenario 1: Aircraft Takes off from Runway
ENW Ground Ground Aiborne uay Vehicle B

Station Datalink Datalink Cwyner diagram

Status reportsfrom the sircraft arF arder indepanden}.
omplete ==t of aircratt flight slalurcomes at 1 Hz rate, asynchronously

o

2 rlink

N7 CACRUT N £

W

get contro lzurface d

|

sefdicontrolSurfacgsStatus, rudderF'r:ls, elevatorPos, |

rAileronPos , IAlleronPos, ergFIapF'osﬁMugElapﬂes)—

ontrolSufacesStatusMsg(controlSurfaceData) |
coMroISuHaces(rudderPo elevatorPos, rAilleronPos,

|&ileronPos, ringFlapPos, IWin¢FIapF‘os)

rol Surface S(rudherF’os, elevator‘:'os, rA|Ier0nF'os,|

IA|Ier0nF'FS, ergFIapPoF, IW|ngFIapF'os)|

L6}

A R

|
|
|
|
\ [ [ [
| kend(attitudeStaths, roll, pitch, yaw)
%
‘ attitudeMsgiroll, pitch, yaw)

anitudeqrgll, pitch, yaw)
%H, pitch, yaw) |
|

get attitude data

attitud

A1 AR TRR AR AR

W

get aireraftp asition

|
[ I
‘ Send(positionS‘ltatus, lattitude, Il:lngitude, altitude)

N

po

positio

onflattitude, \onggtude, altitude)
attitude, Iongitur:le, altitude) |
‘

SN

0

pusit\onf\dsg(lattitude, IoPgitude, altitude) |
i

L Ulhe'aimﬂmtésdm ! Send(ingineSpeedStatLg, engineSpeed)
‘ engineSpeadhi g(engineSpeed)
gineSpeedStatuEEengineSpeed) |

ngineSpead()
send(g}oundSpeedStatu}s groundSpeed)

0

SN

oo

‘groundSpeedM (groundSpeed)|

undSpeedStatuL :_groundSpeed) | |
| |

‘ airSpeé;:lMSg(airSpeed) |
|

airSpeead tus(airSpeed)|

SRR

|

|

roundSpeead ‘ |

g peed()

| send(airSpeedé;gtus‘ airSpesd) |

|

|

|

!

|

airSpeed() |
|
|

Figure 9.21 Aircraft takes off from runway detail (part B)

Once the operations are allocated, as in the previous set of sequence diagrams,

the allocation of operations can be shown in a structure or class diagram, as in the

next figure, Figure 9.22.

Figure 9.22 is easily created by taking Figure 9.11 and toggling the specifica-

tion/structured view to “specification” for the parts to show all the operations.’

5

select which operations you want to show.

Although you might need to set the Display Properties (on the right click menu) for the parts to
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Figure 9.22 CUAV system allocated operations

Answer 4.4 Identifying Subsystem Use Cases

The first part of this exercise identifies the use cases for the Roadrunner Traffic
Light system. However, we limit ourselves to just two system-level use cases—Detect
Vehicle and Configure System. In a real project, we would, of course, decompose
all of the system-level use cases and map them onto all of the subsystems. But, for
this exercise, we limited ourselves to just two system-level use cases.

The first of these, “Detect Vehicle,” has two specialized use cases: “Above Sur-
face Vehicle Detection” and “Subsurface Vehicle Detection.” Given the subsystem
architecture of the traffic light controller, it is clear that most of the action for these
use cases will take place in two subsystems, the Vehicle Sensor Assembly and the
Intersection Controller. Some of the requirements apply to both the specialized
subsystems. Specifically, regardless of how the vehicle is detected, vehicle count and
related statistics must be kept and managed. Further, all the detectors must be able
to communicate over a wired bus. Therefore, in Figure 9.23, the “Detect Vehicle”
system use case is decomposed into two subsystem-level use cases, “Manage Vehicular
Traffic Statistics” (mapped to the Intersection Controller subsystem) and “Commu-
nicate via Wire” (mapped to both the Intersection Controller and the Vehicle Sensor
Assembly subsystems). The decomposition of the use cases is represented with the
«include» dependency. The mapping is indicated in the figure with constraints; in
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Figure 9.23 Roadrunner detect vehicular use case maps to subsystems

addition, the use cases reside in the relevant subsystem areas of the model. Use cases
shared by multiple subsystems can be stored in the system area, in the Common
package, or replicated in the targeted subsystems, as desired.

The specialized use cases are likewise decomposed into subsystem-level use cases
with the «include» dependency.

The Configure System use case is similarly decomposed to a set of smaller use
cases, each of which maps to a specific subsystem. The only exception is the Con-
figure Wireless use case is system level, but is decomposed into three part use cases
that are assigned to subsystems.

A couple of things to note about Figure 9.24. First, the “Configure Operational
Modes” is assigned to the Intersection Controller subsystem. This implies that all the
more specialized forms of this use case, such as “Configure Emergency Mode,” are
mapped to that subsystem as well. Secondly, the more specialized forms for configur-
ing the wireless networks are mapped to the transponder assembly, the vehicle sensor
assembly, and the intersection controller. Remember that the transponder receives
signals from priority and emergency vehicles while the vehicle sensor assembly may
have either wired or wireless connection to the intersection controller. Therefore,

each of the systems must be able to configure its wireless communications.

The latter part of the exercise takes the CUAV system and maps the Manual
Attitude Adjust and Perform Area Search use cases to the subsystems. We show the
mapping of the Manual Attitude Adjust use case to the subsystems in Figure 9.25.
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Figure 9.24 Configure use case maps to subsystems

Figure 9.25 CUAV manual adjust use case mapped to subsystems

In this figure, we use a different means to depict the allocation of use cases to the
subsystems. In the previous example, we used constraints to show the allocation. In
Figure 9.25, we show the allocation with system boundaries, one per subsystem.

I create a use-case diagram for each system-level use case to show the decomposi-

tion to subsystem-level use cases and their allocation to the various subsystems. I call
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this a “use-case allocation diagram,” but it is simply a use-case diagram whose mission

is to show how the system-level use case maps on to the subsystem architecture.

Figure 9.26 shows the same information as the previous figure, but now for the
Perform Area Search use case. If you review the system use-case diagrams, you will find
that Perform Area Search is a specialized kind of Execute Reconnaissance Mission use
case, which is in turn a specialized kind of Execute Mission use case. That latter use case
includes Fly UAV use case. Therefore, rather than directly represent all the included
use-case mappings as well, Figure 9.26 shows the inclusion of the Fly UAV use case

(which in turn includes the Manual Attitude Adjust use case previously shown).
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Figure 9.26 CUAV Perform Area Search use case mapped to subsystems

At the end of this allocation process, each subsystem has a set of use cases allocated
to it. For example, the use-case diagram for the Navigation subsystem might look like
Figure 9.27. In this figure, the actors are stereotyped «internal». This indicates that
from the perspective of the subsystem, the elements are actors, but they are internal
to the system being developed. That is, the peer subsystems become actors to the
navigation subsystem. In the UML language, strictly speaking, actors are not merely

a view of an object—they are its metaclassification. Therefore, Rhapsody requires

the actors to actually be different elements than the subsystems they represent. For

that reason, I preface the name with an “a” (for “Actor”) to distinguish it from the

subsystem of the (otherwise) same name, even though in usage, the “actor-ness” of

an object is a result of perspective only.
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Figure 9.27 Navigation subsystem use cases

Also note that the use cases are stereotyped «Subsystem_Level» as well. This

stereotyping is optional but allows the level of abstraction to be seen at a glance.

The next example, the flight management subsystem, has more use cases and
certainly more actors. These are, again, derived from the system-level use cases, map-
ping a portion of the system-level use cases to the subsystem in question. Because
some of the use cases (such as the Manage BIT® use case) connect to many actors,
some of the actors are replicated. This means only that they appear multiple times
on the diagram. This allows the diagram to minimize line crossing and simplify the

diagram’s appearance.

Lastly, once the decomposition to the subsystem use cases has been done, they
can be dragged to the subsystem specifications area of the model. In the case of the
Flight Management Use Case, the browser view of the Flight Management Subsystem
package looks like Figure 9.29.

¢ Tuse BIT here to stand for Built In Test, a common acronym for this purpose.
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Figure 9.28 Flight Management Subsystem use cases
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Figure 9.29: Flight Management Subsystem specification package contents
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Answer 5.1 Apply Nouns and Causal Agents Strategies

The strategy to apply is to underline the nouns and noun phrases. Below, the
strategy has been applied.

The Vehicle Detector

Three types of Vehicular Detectors shall be supported: subsurface pas-
sive loop inductors (SPLIs), above-surface infrared sensors (ASIs) and
above-surface radars (ASRs).

Subsurface detectors shall use a wired interface to communicate
with the controller, while ASTs and ASRs shall support both wired and
secure wireless communication. All vehicle detectors shall be able to
perform vehicle counting.

In addition, ASIs and ASRs shall be able to receive directional trans-
missions from priority vehicle and emergency vehicle transmitters. The
maximum range of such reception shall be no less than 250 feet and no
more than 1000 feet.

Figure 10.1 shows the relevant measures for both ASI and ASR
detectors. When a vehicle enters the detection area (shown as the
shaded area in the figure), the detector shall report the presence of a
vehicle. Separate detectors are used for each lane in each direction.

273
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Figure 10.1 Infrared and radar vehicle detector
In Table 10.1, the noun phrases are categorized:
Table 10.1 Roadrunner Detect Vebicle nouns
Noun Phrase Element Type Element Name
types of vehicle detectors class VehicleDetector
subsurface passive class PassiveLooplInductor
loop inductors
SPLI class PassiveLoopInductor
Above-surface infrared sensors class InfraredVehicleDetector
ASIs class InfraredVehicleDetector
Above-surface radars class RadarDetector
ASRs class RadarDetector
Subsurface detectors class PassiveLoopInductor
wired interface class WiredNetworkInterface
wired and secure unknown |unknown
wireless communication
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Table 10.1 Roadrunner Detect Vehicle nouns (continued)

Noun Phrase Element Type Element Name
vehicle detectors class VehicleDetector
vehicle counting attribute | VehicleCount.count
directional transmissions class Message
priority vehicle and emergency actor PriorityVehicleTransmitter
vehicle transmitters EmergencyVehicleTransmitter
maximum range UN! useful for testing but not
explicitly represented in
collaboration
reception class Message
250 feet UN useful for testing but not
explicitly represented in col-
laboration
1000 feet UN useful for testing but not
explicitly represented in
collaboration
Figure 5-1 UN
Detection Area Width attribute? | VehicleDetector.areaWidth
Detection Area Length attribute? | VehicleDetector.arealength
Detection Area Distance attribute? | VehicleDetector.areaDistance
relevant measures UN
AST and ASR detectors class AboveSurfaceVehicleDetector
vehicle class Vehicle
presence of a vehicle event evVehicleDetect
Separate detectors class VehicleDetector
each lane attribute | VehicleDetector.lane
each direction UN

The second strategy is to identify the causal agents. In this case, the agents that
ultimately cause events to enter into the system for the “Detect Vehicle” use case are
the Vehicle actors (for a normal detection), and the Priority and Emergency Vehicle
actors for the other kinds of vehicle detections. In our system structure, it will be
sensors that identify these vehicles. For the normal vehicles, we have passive loop
inductors that detect the metallic content of the vehicle and we have infrared and

' UN stands for Uninteresting Noun; in other words, something we’re not going to explicitly model.
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radar detectors that respond to heat and movement, respectively, within the range
of the sensor. The specification also states that the infrared and radar detectors are
connected via wireless links while the passive loop inductor is connected via a wired
link. For the priority and emergency vehicles, the detection is done by receiving a
directional wireless (IR, as it happens) transmission that indicates the approaching
vehicle. The information about the detection will be used in different operational
modes, but that is outside the scope of this strategy. However, this strategy has
identified several kinds of vehicle detectors (passive loop inductor, infrared, radar,
and wireless reception from a transponder or transmitter mounted on the vehicle).
It has also identified wired and wireless interfaces to get that information to the

internal system.

The results of applying these two object identification strategies are shown in
Figure 10.2.
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Figure 10.2 Vehicle Detect collaboration Strategy 1

For the second use case, “Fixed Cycle Mode,” we'll employ the same strategies.

Mode 2: Fixed Cycle Time

Mode 2 is the most common operational mode. In this mode, the lanes
cycle GREEN-YELLOW-RED in opposite sequences with fixed intervals.
The system shall ensure that if any traffic light is non-RED, then all the
lights for cross traffic shall be RED and pedestrian lights (if any) shall




Object Analysis: Answers 277

be set to DON'T WALK. Note that the turn lane times and/or pedestri-
an times are only valid in this mode if (1) the turn lane and/or pedestrian
parameter is set TRUE in the RIC system parameters and (2) if a signal

from the appropriate detector determines the existence of waiting
traffic for the turn or pedestrian light

The durations of the light times shall be independently adjustable by
setting the appropriate parameters (see below). Note that in the table,

the values in parentheses are defaults.

Table 10.2 Mode 2 parameters

Parameter

Value type

Description

Reset Parameters

FALSE,

(FALSE) Sets all the parameters for Mode 2

TRUE | to defaults
Primary Green 10 to 180 | (30) Length of time the primary green light
Time (PG2) seconds |ison
Primary Yellow 2t0 10 | (5) Length of time the primary yellow light
Time (PY2) seconds |ison
Primary Red Delay| 0to5 | (0) Length of time between when primary
Time (PR2) seconds | red light is turned on and the secondary
green light is activated
Primary Walk 0 to 60 | (20) Length of time the primary WALK light
Time (PW2) seconds | is on when the primary GREEN light is
activated
Primary Warn 0 to 30 | (10) Length of time the primary FLASHING
Time (PA2) seconds | DON’T WALK light is on after the WALK
light has been on
Primary Turn 0to 90 |(20) Length of time the primary turn light is
Green Time (PT2) | seconds | GREEN. Note: only valid when the Primary
Turn Light parameter is TRUE.
Primary Turn 0to 10 | (5) Length of time the primary turn light is
Yellow Time (PZ2) | seconds | YELLOW. Note: only valid when the Pri-

mary Turn Light parameter is TRUE.

The default values depend on the system configuration.
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Table 10.3 Default cycle times for Mode 2

Turn Ped | Green | Yellow | Red | Walk | Don’t | Turn Turn
Lane | Signal Walk | Green | Yellow
F F 30 5 0 0 0 0 0
T F 50 5 0 0 0 15 5
F T 50 5 0 15 5 0 0
T T 50 5 0 15 5 15 5

The values in Table 10.3 are true for each direction, independently.
Thus, if the primary road has a car waiting in its turn lane and a pedes-
trian walking, but the secondary road has neither, then the following
timing diagram represents the cycle times for simultaneous turn lane
mode (i.e., the turn lanes in both directions for a road turn together and
the straight traffic doesn't begin until the turn lanes have cycled to Red).

As before, let’s categorize the noun phrases (see Table 10.4).

Table 10.4 Roadrunner fixed cycle mode nouns

Noun Phrase

Element Type

Element Name

Mode 2 State System object
Operational mode State System object
Mode State System object
Lanes Class Vehicle Light Assembly
Sequences Set of states | In various statecharts
Fixed intervals Timeout | In various statecharts
transitions
System Object System object
Traffic light Class Traffic Light Assembly
Lights Class Traffic Light Assembly
Cross traffic Actor Vehicle
Pedestrian lights Class Pedestrian Light Assembly
Turn lane times Timeout | In statechart of Traffic Light
transition | Assembly
Pedestrian times Timeout | In statechart of Pedestrian Light
transition | Assembly
Turn lane Object Instance of Vehicle Detector
Pedestrian parameter Attribute | System configuration object
RIC system parameters Class System configuration object
Signal Event evVehicleDetect
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Table 10.4 Roadrunner fixed cycle mode nouns (continued)

Noun Phrase

Element Type

Element Name

Appropriate detector Object Vehicle Detector
Waiting traffic State Vehicle Detector
Turn or pedestrian light Object Vehicle Light Assembly
Pedestrian Light Assembly
Durations Parameter | Various statecharts

for timeout
transitions

Light times

Parameter
for timeout

Various statecharts

transitions
Appropriate parameters | Attributes | System configuration object
Table UN
Values UN
Defaults UN
Mode 2 Parameters Class System configuration class
Reset parameters Operation | System configuration class
Parameter Attribute | System configuration class
Value type UN
Description UN
Primary green time Attribute | System configuration class
XX to yyy seconds Attributes | System configuration class
Length of time UN
Primary green light Object Instance of Vehicle Light
Primary Yellow Time Attribute
Primary yellow light Object Instance of Vehicle Light
Primary Red Delay Attribute
Time
Primary red light Object Instance of Vehicle Light
Primary walk time Attribute
Secondary green light Object Instance of Vehicle Light
Primary WALK light Object Instance of Pedestrian Light
Primary warn time Attribute
Primary FLASHING State Of an instance of Pedestrian Light
DON'T WALK light
WALK light Object Instance of Pedestrian Light
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Table 10.4 Roadrunner fixed cycle mode nouns (continued)

Noun Phrase Element Type Element Name
Primary turn
Green time
Primary turn light Object Instance of Vehicle Light
Primary turn light Attribute | Of an instance of Vehicle Light
parameter
Primary turn yellow Attribute | Of an instance of Vehicle Light
time
Default values Attributes | Various classes
System configuration Class System configuration class
Default cycle times Attributes | System configuration class
Turn lane Object Instance of Vehicle Light Assembly
Ped signal Object Instance of Pedestrian Light Assembly
Values UN
Table 3 UN
Direction UN
Primary road Object Instance of Vehicle Light Assembly
Car Actor Vehicle
Turn lane Object Instance of Vehicle Light Assembly
Pedestrian Octor Pedestrian
Secondary road Object Instance of Vehicle Light Assembly
Timing diagram UN
Cycle times Attributes | Various statecharts
Simultaneous turn lane State System Object
mode
Road UN
Straight traffic Object Instance of Vehicle Light Assembly

The causal agent strategy for the Fixed Cycle Mode identifies the elements that
cause things to change: these are time (that is, the internal elements themselves
decide when to change the light based on time; these elements include the Vehicle-
LightAssemblies and PedestrianLightAssemblies), vehicles (in the turn lane only in
this case) and pedestrians.

Two views of the object analysis are useful here. First is to recap the system archi-
tecture view because most of these elements are required for fixed cycle mode. This is
shown in Figure 10.3. Since this is a structure diagram, it shows the system as a whole
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with its parts (object roles). However, we'd also like to see how the attributes are allo-
cated to the classes, so that aspect is shown in Figure 10.4. Remember that the parts
in the former figure are specified by classes, and in that figure there is more than one
instance role specified by the same class (for example, P_VehicleLightAssembly and
S_VehicleLightAssembly are both instance roles of the class VehicleLightAssembly—
one for the primary road and one for the secondary road). Thus we could show the
attributes in both or either but I think it just confuses the issue. I find it clearer to
show the structure on one diagram and the class specifications on another.

By the way, note that in fixed cycle mode, we still need to have the sensors present
for the vehicle turn lanes and for the pedestrian, although not for the through traffic.
The different attributes for green, yellow, red, walking and warning times for the
secondary and primary roads (and both through and turn traffic lanes) can be set in
the appropriate instances of the VehicleLightAssembly and PedestrianLightAssembly.
That is, if the instance for the vehicle light is to control the primary turn lane, then
its greenTime attribute will hold the PrimaryGreenTurnTime property specified
for the system. The instance for the secondary through light also has a greenTime
attribute but it will hold the system property SecondaryGreenTime. At this point,
we are assuming that the turn light controls can be all structurally and behaviorally
identical but their role will be known to the IntersectionController. Later, we can
validate this notion when we add the state behavior and execute the model.
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Figure 10.3 Fixed cycle mode collaboration Strategy 2 overall model
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Figure 10.4 Fixed cycle mode collaboration Strategy 2 attributes

The UAV problem is far larger, but the strategy works because the object analy-
sis is performed on use cases of the subsystems rather than the system as a whole.
However, it can still be a complex task to model each subsystem-level use case for
a complicated system such as the Coyote UAV. In the sample problem statement

below, we have only underlined the nouns relevant to the Acquire Image use case.

The Unmanned Air Vehicle (UAV)

The Coyote UAV is meant to be a multipurpose reusable UAV with mul-
timission capability. It is meant to operate at altitude of up to 30,000
feet with ground speeds of up to 100 knots (cruise) and 150 knots
(dash) and carry a payload of up to 450 Ibs for durations in excess of
24 hours. The Coyote is meant to fly unimpeded in low-visibility environ-
ments while carrying either reconnaissance or attack payloads. While
controllable from the ground station CMPCS, it is also capable of flying
complex flight plans with specific operational goals of systematic area
search, ground route (road-based) search, and orbit surveillance of
point targets. Coupled with manned control from the ground, the Coyote
provides sustained 24-hour flight with real-time visual, infrared or radar
telemetry, with target recognition preprocessing. Communications are
Jjam-resistant, although need not be antijamming in a high ECM environ-
ment. Control commands shall be encrypted while telemetry data can

be compressed but unprotected. Telemetry rates for visual telemetry
support 30 frames-per-second (fps) at 640 x 400 resolution. Range of
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flight is meant to be fully supported within line of sight (LOS) range

but since the Coyote also has the ability to be passed among different
CMPCSs, its range is considerably greater than LOS. For navigation, the
Coyote has on-board Global Positioning System (6PS) based-navigation as
well as being directly controllable from the ground station.

Unlike many smaller UAVs, the Coyote does not require specialized
launch and recovery vehicles. It can use a short runway for either auto-
mated or remote-controlled takeoff and landing.

The Coyote Mission Planning and Control System (CMPCS)

Mobile CMPCS with capability to control up to four UAVs with a manned
control station per UAV that fits into a smaller fowable trailer. Each con-
trol station consists of two manned substations—one for controlling the
CUAV and one for monitoring and controlling payloads. If desired, both
functions can be slaved together into a single control substation. Con-
trol of the aircraft shall consist of transferring navigational commands
which may be simple (set altitude, speed, direction), operational (fly to
coordinate set, orbit point, execute search pattern, etc.), planned (upload
multisegment flight plan) or remote controlled with a joystick interface.
Stable flight mechanics shall be managed by the aircraft itself but this
can be disabled for remotely controlled flight.

The CMPCS displays real-time reconnaissance data as well as main-
taining continuous recording and replay capability for up to 96 hours of
operation for four separate CUAVs. In addition, with attack payloads,
the Coyote can carry up to four Hellfire missiles with fire-and-forget
navigation systems.

The Unmanned Air Vehicle (UAV)

Mission Modes

Beyond flight modes, CUAV shall be designed for highly flexible mission
parameters. Normal mission modes include:

* Preplanned reconnaissance

e Remote controlled reconnaissance
e Area search

e Route search

*  Orbit point target

e Attack
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A mission can consist of any number of sequential submissions each
operating in a different mission mode, depending on the current payload.

The Coyote Mission Planning and Control System (CMPCS)

The CMPCS is housed in a 30x8x8 triple-axis trailer that contains
stations for pilot and payload operations, mission planning, data exploita-
tion, communications, and SAR viewing. The CMPCS connects to multiple
directional antennae for communication with the CUAVs. All mission data
is recorded at the CMPCS since the CUAV has no on-board recording
capability. The CMPCS has a UPS that can operate at full load for up to
4 hours in addition to using commercial power or power generators.

A single CMPCS can control up to four CUAVs in flight with one
station per CUAV. Each CUAV control station provides both pilot and
payload operations with separate control substations, although both
functions can be slaved to a single substation for low-vigilance use.

For the reconnaissance payloads, the CMPCS shall provide enhanced
automated target recognition (ATR) capability for all surveillance
types—optical, infrared, and radar. While the CUAV has a rudimentary
capability, the CMPCS provides much more complete support for the
quick identification of high value targets in the battlefield. This capa-
bility is specifically design to identify mobile and time-limited targets
that may only be exposed for brief periods of time before they go back
into hiding. The system is expected to provide high clutter rejection and
a low false-positive error rate. The ATR shall be able to identify and
track up to 20 targets within the surveillance area, with likely identifi-
cation and probability assessments for each. In addition to the ATR, the

payload operator can add targets visually identified from reconnaissance
data or gathered from other sources. The battlefield view can be trans-
mitted over links to remote command staff for tactical and strategic
assessment.

Image Acquisition and Processing

Images may be acquired from all three sensor platforms—optical, FLIR
(forward looking infrared), and SAR (synthetic aperture radar). Opti-
cal and FLIR are passive systems using emitted energy from terrain or
targets to gather information. The SAR is an active sensor, painting
relatively stationary targets with energy (in the microwave range) and
using the reflection of these pulses to determine reflectivity and alti-
tude. The optical and FLIR resolution for single images may be as high
as 1900x1600 resolution while real-time video for all sensor platforms
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is limited to 640x480 resolution at a rate of 30 fps. Streaming imagery
shall be sent with enough redundancy so that complete loss of random
frames shall not affect the guality of other frames. The sensor plat-
forms may be focused at any range from 10 meters to infinite and may
be zoomed up to 100x actual. The sensor platforms shall be mounted on
a gimbaled assembly so that the system can be aimed without affect-
ing the attitude of the CUAV. The FLIR includes a laser range finder to
determine target range so that it can be used in fire control applications.
The SAR shall emit a series of pulses meant to emulate the behavior of
much larger physical aperture antenna; the images from the SAR are a
combination of timed radar surface reflections to be combined into a
SAR image in the ground station using Fourier transforms. Thus, a single
SAR image results from a set of images each resulting from a single
radar pulse from the SAR platform, but combined in the ground station.
Aiming the SAR is done through the use of Doppler sharpening, limit-
ing the amount of information that must be transmitted to the ground
station to construct the SAR image. The use of two pulse emitters in
the SAR platforms allows the interference patterns to be constructed
providing altitude determination as well as radar reflectivity data.

Images may be compressed using lossy or nonlossy methods to
minimize communication bandwidth requirements. The JPEG 2000
compression standard shall be used; for streaming video the associated
MJP2 standard shall be used The compression may be set dynamically
by the payload operator to be 0% to 80% with the default setting to be
nonlossy 50% compression. The imaging system is required to achieve
the desired compression only within 20% of the requested due to the
variances in the image contents. The selection of lossy or nonlossy
compression shall be determined automatically by the imaging system,
switching to lossy compression only when the desired compression rate
cannot be achieved using lossless compression.

Table 10.5 shows the underlined noun phrases in the problem statement. We have
tried to only underline and include noun phrases that are related to image acquisi-
tion and processing. However, this is one of the difficulties in applying this strategy
in large-scale systems. Unless the textual description/specification is extraordinarily
well-organized, it is difficult to just underline the noun phrases for the use case of
immediate concern, and the underlining of every noun phrase leads to hundreds or
thousands of candidate classes that must be sorted and organized.
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Table 10.5 CUAV Acquire Image nouns

Noun Phrase

Element Type

Element Name

Real-time visual, infrared or Class Image
radar telemetry
Target recognition preprocessing Algorithm PreprocessImage()
Communications UN
Control commands Class Command
Telemetry data Class Image
Telemetry rates Constraint Telemetry Rates
Visual telemetry Class Visuallmage
Line of sight (LOS) range UN
Coyote Class CUAV
CMPCSs Class GroundStation
Reconnaissance payloads Class ReconAssembly
Enhanced automated target Algorithm identify Target()
recognition (ATR) capability class Target
Optical Class VideoAssembly
Infrared Class FLIR_Assembly
Radar Class Radar_Assembly
High value targets Class Target
Battlefield UN
Capability UN
Mobile and time-limited targets Class Target
System Class CUAV_Project
False-positive error rate UN
ATR Algorithm identifyTarget()
class Target
Targets Class Target
Surveillance area UN
Payload operator Actor MissionSpecialist
Targets Class Target
Reconnaissance data Class Image
Battlefield view Class Image
Links UN
Images Class Image
Sensor platforms Class ReconAssembly
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Table 10.5 CUAV Acquire Image nouns (continued)

Noun Phrase

Element Type

Element Name

Optical Class Video_Assembly

FLIR Class FLIR_Assembly

Passive systems UN

Emitted energy UN

Terrain Class TerrainFeature

Targets Class Target

Information Class Image

SAR Class Radar_Assembly

Active sensor UN

Targets Class Target

Energy UN

Microwave range Attribute Frequency

Reflection UN

Pulses Attribute PulseRate
PulseLength

Reflectivity Attribute Color

Altitude Attribute Range

Optical and FLIR resolution Attribute resolution

Real-time video Class ImageStream

Sensor platforms Class ReconAssembly

Resolution Attribute X_resolution
Y_resolution

Rate Attribute FrameRate

Streaming imagery Class ImageStream

Redundancy UN

Frames Class Image

Quality UN

Range Attribute Range

Gimbaled assembly Class Gimbal

Attitude UN

CUAV Class CUAV

Laser range finder Class LaserRangeFinder

Target range Attribute Range

Fire control applications UN
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Table 10.5 CUAV Acquire Image nouns (continued)

Noun Phrase

Element Type

Element Name

SAR Class Radar_Assembly
Series of pulses Class DPulse
Physical aperture antenna UN

Images Class Image
Combination of timed radar Class Radar_Image
surface reflections

SAR image Class Radar_Image
Ground station Class GroundStation
Fourier transforms Algorithm ComputeSARImage()
Single SAR Image Class Radar_Image
Set of images Class Radar_Image
Single radar pulse Class Pulse

SAR Platform Class Radar_Assembly
Information UN

Pulse emitters Class PulseEmitter
Interference patterns Class Radar_image
Altitude determination Attribute Altitude
Radar reflectivity data Attribute Color
Lossy or nonlossy methods Algorithm CompressImage()
Communication bandwidth UN

requirements

JPEG 2000 compression UN

standard

M]JP2 standard UN

Compression Algorithm CompressImage()
Payload operator Actor PayloadOperator
Default setting Attribute DefaultCompression
Imaging system Class CUAV
Desired compression rate Attribute CompressionRate
Variances in the image contents UN

Selection Attribute IsLossy
Lossless compression Attribute IsLossy
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In this problem, the use case Acquire Image is a capability of the Reconnaissance
Management subsystem. A part of this analysis might spill over into other subsys-
tems (notably Targeting, Airborne Datalink, and the reconnaissance payloads), but
primarily we’ll be focused on two things:

1. Identifying and linking together the objects, classes, attributes, and algorithms
within the Reconnaissance Management subsystem

2. Characterizing the interfaces of the Reconnaissance Management subsystem to
its peer subsystems

To that end, it is necessary to decide how to split the functionality between the pay-
loads and the other subsystems. In general, the functional allocation will be thus:

* The recon platforms are responsible for the production of a single uncompressed
and unprocessed image at a time.

* The reconnaissance management subsystem (RMS) is responsible for processing
and compressing recon images, managing the streaming of images, commanding,
aiming, and focusing the recon platforms, and to identify targets (as directed by

the Targeting subsystem).
* The RMS is responsible for commanding configuration of the recon platforms.

* The Targeting subsystem is responsible for target selection, setting of the target

identification parameters, and tracking targets.

The created class diagram in shown in Figure 10.5. You'll note that some of the
identified objects in the previous table are not represented in the class diagram. This
is because they are allocated to other subsystems; for example, the Gimbal is a part
of the payload, not part of the Reconnaissance Management subsystem. Also, there
are a few classes in the diagram that do not appear in the table. They were added to
hold operations or attributes, or because it seemed likely that it would be needed
based on the other classes and how they must interact. The model is certainly not
complete, but this is typical when such a strategy is applied. Multiple strategies must
be applied to find all the classes and their features to fully realize a use case.

The second strategy, “Causal Agents,” looks for objects that initiate actions.
Many of the actions are ultimately caused by the Payload Operator, such as moving
the gimbal, aiming and focusing, setting the resolution and so on. There must be
some facility in the subsystem that accepts and processes those commands. Once
initialized, the recon platforms themselves produce images that they send to the
Reconnaissance Management subsystem. Lastly, the Targeting subsystem specifies
the nature of the targets to look for and the reconnaissance management subsystem

must receive and respond to such commands as well. Figure 10.6 shows the classes
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identified using the casual agent strategy. Some operations were added to facilitate
the roles of the classes in causing the appropriate actions to occur.

Answer 5.2 Apply Services and Messages Strategies

These strategies are all about using the interfaces between the system and its actors
or between elements inside the system to identify objects. In the case of a large-scale
and abstract service, the service must be decomposed into subservices, and possibly
sub-subservices. Ultimately, whether or not services are decomposed, the identified
services must be provided by the objects within the system. The purpose of this strategy
is to use this fact to identify objects inside the system and then allocate the services
to those objects. Since services have both a (at least one) caller and a provider, the
strategy will also identify links between the objects because, in the majority of cases,
to invoke a service on a server object requires an association from a client object.

The strategies work in a different way as well. First of all, most of these services
will require data to be passed, either as input, output, or bidirectional parameters,
or as return values. Those parameters must come from somewhere and many of
them are likely to be instances of classes or application-specific data types (which
also need identification).

In the first half of this section, we'll look at the same two Roadrunner use
cases— “Detect Vehicle” and “Fixed Cycle Time Mode.” In the first case, clearly the
messages have to do with a vehicle arriving. The specification states that there are
three ways to detect vehicles: passive loop induction, laser range finding, and changes
in the infrared field. While it is possible to maintain the distinction between how the
detection occurred, we may assume that for the purpose of detecting an oncoming
vehicle, how the detection occurs isn’t as important as that it occurred and where
(as in which traffic lane) it occurred. Thus, we probably have a service such as

vehicleDetected(d:Direction)

Where the type Direction may be an enumerated type with values of (PRIMARY,
PRIMARY_TURN, SECONDARY, and SECONDARY_TURN) in this case.>?
The two considerations for this service (in terms of using it as a strategy to iden-
tify objects) is who knows that a vehicle is detected and can therefore invoke the

This enumerated type obviously wouldn't work around the Arc de Triomphe, but it will for our
problem case.

There is another way to detect vehicles using transponders for emergency and priority vehicles; how-
ever, there are other use cases that deal with that functionality.
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services, and who cares that a vehicle has been detected and therefore provides the
service. Obviously some (or possibly a set) of objects are keeping track of whether
or not we should turn lights green to permit traffic to flow, depending, of course,
on operational mode. The traffic lights control the traffic and so maybe they should
be sent the message—but which one? All of them? Or should all the traffic lights
be very simple and a centralized controller do all the work?

There are many valid answers to that question. In general, I prefer to apply the
concept of “distributed intelligence” rather than “centralized intelligence.” In my
experience, it is far easier to create a set of many half-witted objects that collaborate
than it is to create a single brilliant object in charge of everything, that controls a
set of moronic slaves.* In this case, we'll take the approach that each traffic light
assembly is responsible for managing its own vehicular traffic. In that case, each
instance of Traffic Light Assembly will receive the messages from only its vehicular
sensors (that is, the sensors for its through and turn lanes). This further implies
that the traffic light assemblies must collaborate since, if the vehicle arrives in the
secondary through lane, the secondary traffic light must notify the primary to go
red so that the secondary traffic can proceed. This implies another service “Please
Go Red” that one traffic light may send another.

Following this logic, we arrive at a class diagram similar to Figure 10.7.
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Figure 10.7 Detect Vebicle Strategy 3—services

4

to the reader ;-)

I'm sure there’s a political conclusion to be drawn there somewhere but I'll leave that as an exercise
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The other use case under consideration is fixed cycle mode. In this mode, the
behavior of the vehicle light assemblies is driven by time-based events. However,
they do need to send messages to each other that inform one vehicle light assembly
that it is safe for it to allow vehicles to pass. In addition, there must be some com-
munication between the vehicle light assembly and the pedestrian light assembly
since they must work in coordination. This strategy doesn’t require communications
from the vehicles, but it does require it from the pedestrian sensor assemblies.

The services from the pedestrian sensor assembly are similar to the vehicular

case:
pedestrianDetected(d:Direction);

The services going back and forth between the pedestrian and vehicular light
assemblies are a bit more complex, because these objects must clearly work in concert.
In order to understand exactly how they interact, we must explicitly define how the
objects work in isolation and what information they need in order to perform that
behavior. The system-level behavior associated with this use case was given in the
earlier discussion when we specified the fixed cycle mode use case. In this case, we
are now going to allocate portions of this behavior to different objects; each vehicu-
lar light assembly will be responsible for controlling traffic in only one direction,
although this includes both through and turn lanes, as well as coordinating with
the pedestrian light assembly in the same direction, and notifying the vehicle light
assembly in the orthogonal direction when it is safe to allow traffic to flow. The
pedestrian light shall only be concerned with managing pedestrian traffic.

The following two figures show roughly what might be reasonably expected for
the state machines for these classes. However, the state machines are not complete
(we'll do that later). The purpose of doing them now is to help us understand how
the two objects collaborate. The simpler of the two is the pedestrian light assembly,
in Figure 10.8.

The vehicle light assembly state machine is a bit more complex (see Figure 10.9).
It uses one and-state to control the interaction with the pedestrian light assembly,
another to manage the turn light, a third to keep track of waiting vehicles in the
turn lane, and another for management of the through traffic light.
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Thus, we can see that the pedestrian light sends an evPedestrianDone event to
the vehicle light assembly, while the vehicle light assembly sends an evWalk event to
the pedestrian light assembly.” And, of course, something has to provide the services
to actually turn on the lights for the vehicles and pedestrians.

These considerations allow us to refine our object model a bit more, as shown
in Figure 10.10.°

Let us now turn our attention to the UAV. There are many services associated
with Acquire Image. Of course, different payloads are involved, but they are outside
the scope of the subsystem we're modeling here. Nevertheless, they must provide
services to aim and focus the sensor systems and provide the image. Let us assume
that while the reconnaissance management subsystem may initiate the creation of
an image, that image is produced asynchronously. Furthermore, the recon payloads
may be set up to send a stream of images at some specified rate. This means that the
reconnaissance management subsystem requires a service to receive those images.
The image itself is surely an instance of a class and may contain metadata such as
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Figure 10.10 Fixed cycle mode Strategy 3—services

The IS_IN operator, which allows an object to examine another’s current state, is provided by the
infrastructure for free so it won't be explicitly modeled.

Only the objects identified in this strategy are shown in this diagram in an effort to be clear about
which objects were identified using the strategy. In the actual project, you would just add the object,
classes, etc. to the existing collaboration rather than create a separate diagram.
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the location (via the navigation subsystem GPS), date and time stamps, the kind of
sensor used to generate the image, configuration parameters of the sensors (such as
the wavelengths used, or pulse width and frequency from the SAR), the encryption
method, etc.

A first-cut solution with the services strategy is shown in Figure 10.11. The only
use of the ports in the collaboration is to connect to the ports of the encapsulating
Reconnaissance Management subsystem. The provided ports are “behavioral” mean-
ing that they provide the services requested over that port. The required interfaces
mean that that is the class whose instance will ultimately invoke those services from
the other subsystems over those ports. The ports between subsystems are typically
characterized by both provided and required interfaces. In this collaboration, the
provided and required interfaces are typically realized by different classes inside the
Reconnaissance Management subsystem. We've added the interface names to clarify
the port usage.

The collaboration is a bit elaborated from the previous strategy. This elaboration
includes moving operations and attributes around and creating new classes entirely.
This process of elaborations is called “refactoring” and is very common during the

creation of an object analysis model.
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Figure 10.11 Acquire Image collaboration—services strategy
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Answer 5.3 Applying the Real-World Items and
Physical Devices Strategies

In the traffic light control system, there are both real-world items and, of course, a
number of physical devices. In terms of the real-world resources to be managed, we
need to perform vehicle counting and compute traffic flow statistics, and in the adap-
tive mode, the timing of the traffic lights change to optimize the traffic flow. Thus
“cars” are a resource that must be represented and used in computational analysis
for the Detect Vehicle use case (which includes management of traffic statistics). As
for physical devices, there are the vehicle sensors—passive loop inductor, infrared
vehicle detector, and radar vehicle detector, the pedestrian sensor (“button”), and
many different actuators (lights to be turned on and off) in the correct sequences
and timing.

The classes shown in Figure 10.12 representing the sensors and actuators do not
simulate their behavior but rather provide interfaces to control and query the actual
physical devices. The vehicle is represented as a summary statistic for the vehicle
traffic flow. The application of this strategy resulted in the identification of a new
class (VehicleStats) and also a new operation for the Intersection Controller. In

One VehicleStats per
dotoctor, but possible

more than one per
O direction
VehicleSrars
Datecthessage 4| VehicleDetector \
= = 1 5 H totalVehicleCountint
B detectorDirection: Direction | B averageVehicleCaunt double
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L
Y T e
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S S .
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P_pSensorPort E: pLightPort
L1
=T S_pSensorPort 1 S_pLightPort
o o ﬁupdalehg’_‘hﬂlmes()'voﬂ 0] conhigPort
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Figure 10.12 Detect Vebicle use case—real-world items strategy
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addition, physical devices (VehicleLight and PedestrianLight) have also been added.
The physical devices for sensors have already been identified but are not any more
detailed in this model.

The Fixed Cycle Time mode is primarily concerned with the actuators because the
behavior of this use case is time-based, rather than arrival-event based. However, it

doesn’t add any new classes over those in the previous figure so we won't redraw it.

The Coyote UAV also has many real-world items and physical devices for the
Reconnaissance Management subsystem. In terms of resources, Targets are certainly
real-world items that must be identified and (by the Targeting subsystem) tracked.
Images are a representation of “ground truth” and so represent the real-world condi-
tion. As far as physical devices, the recon platforms configurations are managed by
the Reconnaissance Management subsystem, and so fit the strategy parameters as

well. The classes identified by this strategy are shown in Figure 10.13.
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Figure 10.13 Acquire Image use case—real-world items strategy
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Answer 5.4 Apply Key Concepts and
Transaction Strategies

The Roadrunner traffic light control system is fairly simple in terms of key concepts.
A short list of concepts is shown in Table 10.6. Note that this list only provides the
concepts around detecting vehicles because we are analyzing the use cases indepen-
dently. A different list would be constructed for a fixed cycle mode or other use
case. In addition, some of the concepts listed overlap (such as Vehicle and Vehicle

Detection) and may have the same realization within the model.

Iable 10.6 Roadrunner Detect Vehicle key concepts

Concept Description Representation
Lane | The position of a car is important in | Class: Vehicle Detector (one
terms of which lane it is in, so that it | instance per lane)
can be controlled via the light. Attribute: detectorDirection
Time | Time is fundamental for time-based | Attribute: many attributes for
state transitioning for light control | times for different lights
Event: many timeout events
in statecharts
Traffic | The flow of cars along a specific road | Actor: Vehicle
or through a specific intersection Event: evVehicleDetect
Attribute: totalVehicleCount,
average VehicleCount
Vehicle | A car traveling on one of the lanes | Actor; Vehicle
monitored and controlled by the Event: evVehicleDetect
system
Vehicle | The number of vehicles traversing | Attribute: totalVehicleCount,
Count | the lane during a period of time averageVehicleCount
Vehicle | A detection of a car in the lane Actor: Vehicle
Detection Event: evVehicleDetect

As for the transaction strategy, the arrival of a pedestrian or vehicle can be consid-
ered a transaction. Remember that a transaction represents an interaction between
objects. In general, the transaction includes the request but isn’t complete until the
response initiated by that request has completed.

The “Request for permission for traffic to flow” is represented in the statechart
for the VehicleLightAssembly where we have the “latch” and-state remembering that

a vehicle arrived for the various control use case. In the fixed cycle mode use case,
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we only need to remember the turn lane (because the through lanes are driven by
time) and the pedestrians. In other modes of operation, we will need to remember
when vehicles arrive for other lanes as well. The latch is cleared when the request is
handled by sending an evIurnLaneReset once the event is handled. Also, note that
in most transaction-oriented systems, each request results in a new transaction that
must be managed. In this case, many requests (multiple cars or anxious pedestrians)
may result in only a single transaction since the latch and-state throws away addi-

tional requests once a single one is made.

Combining these two strategies together results in Figure 10.14.

)

1 Detecthlessage  q VehicleDetector

VehicleStats

.| BrotalvehicleCountint
8 dotectorDiroction Direction “| ® averageVehicleCount double
B detectorDirection Direction

Vohicls BewvehicleDelecl().void

Figure 10.14 Detect Vebicle use case—rkey concepts strategy

When there are multiple transactions to be managed, each is normally repre-
sented as a separate object. Since there is only one in this case, we integrated it into
the statechart. However, we could have done this by creating a WaitingCar class
with a multiplicity of 0,1 to the VehicleDetector class. The VehicleDetector could
dynamically create the instance when a car arrives and the VehicleLightAssembly
could destroy it when the light cycles through, handling the waiting car transaction.

I recommend you create this diagram as an exercise to the reader.

The CUAV Acquire Image use case has abstract concepts as well, around what an
image s, its acquisition, and possibly early processing. These concepts are shown in
Table 10.7 with brief descriptions and how they are represented in the model.

Table 10.7 CUAV Acquire Image use case key concepts

Concept Description Representation
Point Primitive element of a picture that holds Class: Point
a color
Image Picture of something of interest Class: Image

FLIR Image |Image taken by a forward-looking infra- | Class: FLIRImage
red system, colored by translation into
“false color”

Visual Image | Image taken by an optical camera in the | Class: Visuallmage

human visual range
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Table 10.7 CUAV Acquire Image use case key concepts (continued)

Concept Description Representation
Radar Image |Image taken by painting an area with Class: RadarImage
active radar frequencies and capturing the
reflection
Focus The focal length of the camera; also the Attribute:
ability to adjust the focal length of the focalLength
camera
Zoom The ability to constrain an image to a Attribute:
smaller area while simultaneously increas- zoomLevel
ing the resolution of that selected area
Aim The ability to direct the imaging system Attribute:
to look at different areas angleX, angleY
Image The degree of detail held within an image | Attribute: resolu-
Resolution tionX, resolutionY
Compression | The ability to reduce the memory Class:
required to hold an image JPEG2000Image
Attribute:
compressionRate
Operation:
compressImage()
Lossy Compression that results in a loss of detail | Attribute: isLossy
Compression
Lossless Compression that does not result in a loss | Attribute: isLossy
Compression | of detail
SAR Radar frequency used to paint the target Attribute:
Frequency |area with a synthetic aperture radar frequency
SAR Pulse | The rate at which radar pulses are deliv- Attribute:
Rate ered to paint a target area pulseRate
SAR Pulse | The duration of a radar pulse Attribute:
Length pulseLength
FLIR The range of frequencies examined by an Attribute:
Frequency |infrared camera freq_low, freq_high
Range

As far as transactions go, the ground station can request images to be delivered

either individually or by requesting images to be taken at a specified rate. The first

isn’'t what we normally mean by a transaction because the lifetime for the transaction

is just until the (synchronous) request is handled. Transactions, as a strategy of iden-

tifying objects, have a nontrivial lifetime and the request is typically asynchronous.
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Requesting the delivery of a set of messages at a certain rate is closer to the notion
of a transaction than a simple request for an image. Because the images need not
be stored within the UAV (they are actively transmitted but not necessarily stored
within the UAV), but delivered as soon as they are ready, the representation of this
transaction is simply to have a nonzero image rate. To stop the transmission of a set
of images, the mission specialist need only set this attribute to zero.

The classes and class features identified using these strategies results in

Figure 10.15.
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Figure 10.15 Acquire Image use case key strategies and transactions strategy
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Answer 5.5 Identify Visual Elements and
Scenarios Strategies

This problem asks for the application of the “Apply Scenarios” strategy for object
identification. As with all other object-identification strategies, this one is best
applied in conjunction with one or more others. Nevertheless, it is a remarkably
useful strategy to have in your analysis toolbox.

The first part of the answer is the application of this strategy to the Roadrunner
Traffic Light Control System “Detect Vehicle” use case. The most obvious way to
apply the strategy is to simply start at the first message in the use-case scenario, find
the objects that deal with it and perform the necessary actions, and then go on to the
next. Sometimes, you'll feel more comfortable starting in the middle of the scenario,
either because it is of significant importance or because it is an area that is more
understood than the rest. Whichever ordering is used, the job isn't complete until

all the messages to and from the system executing the user case are accounted for.

The solution here is shown as a set of diagrams. The first shows the elaborated
sequence diagrams and the last depicts the resulting class diagram. Note that the
display and keyboard classes are not as detailed as they could be. If the Ul is under
design as well, then the elements of the display (text, icon, and other graphical
widgets) would be identified as a part of this effort along with their relevant features
(operations and attributes).

The first set of sequence diagrams is shown in Figure 10.16 through Figure 10.18.
In your own model, you might very reasonably choose to show all the messages on
a single sequence diagram because you can easily set the zoom level and scroll as
necessary. On the printed page, though, it is easier to follow if the single scenario is
broken up a bit more. Since UML 2.0 provides a standard way to do that (“refer-
enced interaction fragments”), that’s what's been done for this solution to improve
its readability on the printed page.

The problem statement back in Chapter 5 required this solution to be done by
“elaboration” of the original sequence diagram; that is, take the original sequence
diagram, copy it, and add lifelines and messages to show the same scenarios at a more
detailed level of abstraction. To make this even clearer, I've emboldened the lifelines
from the original scenario. Notice also that I've kept the “use case” lifeline, which
is a stand-in for the “system executing the use case.” This makes the comparison of
the original and elaborated sequences much more straightforward.
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Figure 10.16 shows the first level of elaboration. The scenario breaks up into
two parts: the configuration of the passive loop inductor and the subsequent detec-
tion and counting of vehicles. Figure 10.17 elaborates that configuration into two
parts, basic configuration and enabling the detector, and Figure 10.18 shows the
details of the setting up the basic configuration. In these latter two figures, human
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Figure 10.17 Configure passive loop inductor elaborated scenario
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interface objects (Keyboard and Display) are introduced to show how the human
operator interacts with the HMI” front panel to actually perform the configura-
tion. As mentioned eatlier, if the design of the HMI was a focus of this work, we
would have identified more detailed interface objects, such as Knob, Button, Key,
TextDisplayWidget, and so on. These have been elided here, but would probably
show up in a more detailed application of the strategy.

The only reason for breaking up Figure 10.17 was readability—the scenario was
abit long. So I decided to break it at a natural breaking point, even though it wasn't
halfway through. This breaking point was the completion of the configuration of
the passive loop detector. Figure 10.17 then goes on to show how the detector is
enabled. One thing that is apparent from the scenarios is how the user interacts with
the front panel display to make the setting changes. This permits user workflow
analysis to be done to see if the HMI adequately meets the customer needs.

Another thing that is apparent from the scenario is how the objects collaborate
to achieve the higher-level behavior specified by the user case. Note that the counts
are done on a per-detector basis, so that detailed traffic-flow analysis can be done, if
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Figure 10.18 Basic configure passive loop inductor elaborated scenario
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necessary. Also note that the detectors can be individually configured (more scenarios
...) but in this case, we configured them all at once using the “0” sentinel value to
select all passive loop detectors.?

Another thing to notice is the central role that the Intersection Controller plays
in the interaction. Rather than have direct connections to every element to the front
panel, the Intersection Controller mediates those connections. This was done to
simplify the topology. The Intersection Controller clearly needs to have connections
to the detectors anyway.

The next set of figures deals with the set-up and use of the infrared detector.
This is also a passive detector, but its configuration is slightly more involved than

the passive loop detector.

Figure 10.19 has pretty much the same structure as Figure 10.16, but with dif-
ferent internal parts to perform the infrared vehicle detection.
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Figure 10.19 Infrared detector elaborated scenario

You may be noticing the “scenario explosion” implied by referencing other, yet-to-be-created, scenar-
ios. There are an infinite set of scenarios; however, it is adequate to create the minimal spanning set
of scenarios, in which each requirement (or transition, if you have a state machine for the use case) is
represented at least once.
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Figure 10.20 Configure infrared detector elaborated scenario
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Figure 10.21 Configure parameters infrared detector elaborated scenario
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Figure 10.22 Complete configuration infrared detector elaborated scenario

The last scenario in this set is for the radar detector. The structure of these

sequence diagrams is much the same as for the other scenarios. This scenario is broken

up across three sequence diagrams as well, Figure 10.23 through Figure 10.25.

Figure 10.23 shows the highest-level sequence diagram, which includes the

Configure Radar Detector reference interaction fragment. This interaction fragment

is elaborated in Figure 10.24. Figure 10.24 in turn contains the reference interac-

tion fragment Basic Configure Radar Detector that is subsequently displayed in

Figure 10.25.
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Figure 10.23 Radar Detector elaborated scenario
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Figure 10.25 Basic Configure Radar Detector elaborated scenario
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The last scenario presented here is the elaboration of the Get Stats use-case sce-
nario. As before, this scenario is broken up into multiple sequence diagrams. The
main one is shown in Figure 10.26. The first element in the sequence diagram is a
reference to the second (Figure 10.27) that shows how the statistics are reset.

The original Get Stats use-case scenario contained an unordered interaction
fragment. We can't just use that as-is because, while the order of the external events
is unordered, the response to each event is not. Thus, we put the response to each
detection event inside a strict interaction fragment, indicating that strict ordering is
followed within that fragment. I also slightly modified the original scenario at the
end, when statistics are requested. Specifically, I passed in specific lane numbers for
the requests—“PD”, a constant referencing the primary through lane (nominally
equal to “17) and “0” to get the total for all lanes.

As before, Figure 10.26 contains a reference interaction fragment, Reset Stats,

which is detailed in Figure 10.27.
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Figure 10.26 Elaborated Get Stats scenario
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S0:Vehicl STC:Vehic
eDetector leCount

Figure 10.27 Reset Stats scenario

The resulting class diagram from this scenario analysis is shown in
Figure 10.28.

«Subsystems
IntersectionController_Class

B startTime: TimeDate

B counrint

SgetCount{)int
BserCount(eint) void

Figure 10.28 Class diagram for visual elements and scenario strategies
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The second half of the problem is to apply the same strategies to the CUAV
Acquire Image use case for the Reconnaissance Management subsystem. We could
apply this strategy system-wide, in which case this would involve identification of
objects within, at minimum, the airborne and ground data link subsystems, and
the HMI for the missions operations specialist in the ground station in addition. In
this solution, well limit ourselves to the Reconnaissance Management subsystem,

which has no HMI.

In this solution, we're going to use the UML 2.0 lifeline decomposition feature.
The original sequence diagram will be preserved (except for adding the explicit
reference to the more detailed sequence diagram) and the detailed diagram will be
added as a reference. Figure 10.29 shows the high-level sequence diagram from the
user case. The next figure, Figure 10.30, shows the details as an elaboration of the
referenced lifeline. Note that messages going into the Acquire Image lifeline on Figure
10.29 exit the ENV lifeline in Figure 10.30 and, conversely, messages coming from
the Acquire Image lifeline in Figure 10.29 enter the ENV lifeline on Figure 10.30.
However, notice that a few messages were “discovered” during the detailed analysis.
This is common, and usually this means that the original use-case scenario should
be updated to reflect this deeper understanding.
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Figure 10.29 Acquire Image use-case scenario with reference
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Figure 10.30 Acquire Image detailed sequence diagram

As before, to limit the length of the sequence diagrams, Figure 10.30 is decom-
posed using referenced interaction fragments. The referenced interaction fragment,
shown in Figure 10.31, contains the message that handles the periodic acquisition
and processing of the images for the scenario.

The result of this scenario analysis is the class diagram in Figure 10.32. The actors
shown in the figure are other subsystems within the aircraft and are actors from the
perspective of the Reconnaissance Management subsystem. To avoid name clashes
with the actual subsystem class, such actors are identified with a leading “a” in the
name, but really they are just stand-ins for the actual subsystem under development
by another team.

For additional practice, try adding the HMI elements in the ground system to
support the visualization and manipulation of the images, and add elements to

support target identification and tracking.
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Answer 5.6 Merge Models from the Various Strategies

In this problem you were to merge the solutions from the previous strategies into a
single class diagram to show the elements collaborating together. You should have
noticed that, unsurprisingly, the strategies had significant overlap in the elements
they identified, although each tended to find some unique elements as well. In

practice, it is usually enough to use two to four strategies on any given use case to
find all the classes and their features.

Figure 10.33 shows the merged class model from the various strategies while
Figure 10.34 depicts the merged class model for the CUAV Acquire Image use-case
analysis. There should be no surprise from this effort, but it may be necessary to
redefine an element or two to make everything consistent.
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Figure 10.34 Acquire Image collaboration merged strategies

These merged class diagrams are the representation of the “analysis model” for
the use case. However, in the context of this book we haven’t validated that these
elements are all correct. Rhapsody allows you to generate code and execute these
models to ensure that they do, in fact, correctly realize the use cases. That execution,
while crucial in a real project, is beyond the scope of this book. Interested readers
should look over the tutorial information on the included Rhapsody installation.
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Answer 6.1 Concurrency and Resource Architecture

As it happens, the collaboration in Problem 6.1 includes the fixed cycle model col-
laboration as well. The latter collaboration is structurally simple, if behaviorally more
complex. We will use the Recurrence Properties and Independent Processing as the
primary task identification strategies. All the light assemblies must synchronize when
one light goes from red to green or “bad things” will happen, but between these
synchronization points, their processing is independent. The pedestrian lights are
more tightly coupled with the traffic lights of the same orientation. Thus, as a first
stab, let’s make one task for traffic control for each of the two orthogonal directions
of traffic. Let’s use the Event Source strategy for the sensors and add interrupt han-
dlers for the primary through traffic (north and south), primary turn traffic (north
and south), and primary pedestrian traffic (two for each side of the road), and a
similar set for the secondary traffic orientation. The keyboard probably runs in its
own thread as well, to make sure no user input is missed, and the display probably
runs in its own thread, since the display processing is independent.

Figure 11.1 is a class diagram so it doesn’t show all the instances of the thread
classes. Because this is a class diagram, the ports between the threads cannot be
connected with links, but if it is drawn as an object diagram, those links among the

ports can be added.
The UAV side of things is only slightly more complex in this exercise. This is

because we are modeling threads at the subsystem level. We also haven’t considered
classes from other use-case collaborations. There are a couple of aspects of the col-
laboration that have been as of yet unconsidered. There are ports for connecting the
subsystem (and its contained collaborations) with the Airborne Datalink subsystem
and with the various payloads. This is likely to be done via networks, one for the
UAV itself and another for connecting to the payloads. Network communications

317
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Figure 11.1 Roadrunner concurrency model

should almost always be decoupled from the execution of the required semantics,
so we need two network interfaces to operate in separate threads. Additionally, the
configuration of the imaging and platforms operates independently from the image
processing, so the objects facilitating these functions should be in separate threads.
Finally, targeting, a topic only lightly touched on so far, is clearly independent as
well, and so will be in yet another thread. The concurrency model for the Recon-

naissance Management subsystem is shown in Figure 11.2.
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Figure 11.2 UAV concurrency model

Answer 6.2 Distribution Architecture

Figure 11.3 shows the overall distribution architecture for the Roadrunner system.
The distribution-related classes are shown shaded. Note that many of the previous
associations between classes have been “broken” since they will be implemented via a

communication protocol. The figure shows three primary network interface classes:

1. A WiredNetworkInterface to support Ethernet connections for the front panel dis-

play (display and keyboard) and for the remote monitoring and control station.

A WirelessNetworkInterface to support transponder messages from high-priority

and emergency vehicles and also to support wireless connections between the
VehicleLightAssembly and the VehicleDetector.

A Seriallnterface to support the wired connections among elements local to the
intersection (vehicle light assemblies, vehicle detectors, pedestrian light assemblies,
pedestrian detectors, and the intersection controller.

We can go a bit deeper here as well. What is the structure of the message types
and other elements associated with the various interfaces? The following Figure 11.4

goes into more detail about the structure of the serial interface.
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Figure 11.3 Roadrunner distribution model

Figure 11.4 shows the Seriallnterface as a structured class containing a Serial-
ProtocolStack, message queues (incoming and outgoing), an RPC-interface and a
low-level hardware interface. The protocol stack is itself a structured class, also shown
in the figure, with three layers: an application layer with interfaces to the sender
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Figure 11.4 Serial interface structure
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client and to clients that receive incoming messages. The structure of the messages

is also shown as a generalization hierarchy in the figure.

Figure 11.5 and Figure 11.6 show the structures for the wired and wireless
interfaces. They are slightly different, more to show some presentation alternatives
than anything else. In a real system project, you would develop, essentially, an object
analysis model for the communication infrastructure. You might also purchase a
complete protocol stack that you would simply integrate into your interface classes
rather than build your own.
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Figure 11.5 Wired interface structure
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Figure 11.6 Wireless interface structure
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For the UAV, we apply the Port Proxy pattern, as the problem dictated, result-
ing in Figure 11.7. The proxies are shown with a (slightly) different shading and
with the box lines dashed. This special notation has no semantic meaning but is
added simply to make the proxies more easily distinguishable. We also follow the
convention of prefacing interface names with a lower-case “i”." Even though this
diagram adheres to the “one important concept per diagram” constraint, this figure
is definitely “busy” and we might very well decide to elide some of the interfaces on
the diagram to make it more readable. Nevertheless, it does show how the proxies
provide semantic interfaces on one side and network interfaces on the other. The
proxies that connect to the payload via that Ethernet network as well as the proxies
that connect to the wireless networks are also shown.
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Figure 11.7 CUAV distribution with proxies

We can simplify the diagram without a loss of information by noting that if
the model is well-formed, connected ports form either 1) port delegations (with
compatible interfaces) or 2) port conjugates (with reversed, but compatible inter-
faces). That is, delegation ports connect to their targets with the same or compatible
interfaces, while ports that connect between servers and clients connect with their

' A more common naming idiom uses uppercase “I”. However, in some fonts, it is difficult to distin-
guish uppercase “I” (upper case “1”) from “1” (lower case “L”) and the number “1”. I prefer the lower

e

case “1” preface for this reason.
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interfaces reversed (i.e., services offered by one are required by the other, and vice
versa). Since the proxies are in the middle of it all, we can remove the display of the
port interfaces to simplify the diagram as shown in Figure 11.8.
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Figure 11.8 CUAV distribution with proxies (simplified)

While Figure 11.8 is still “busy,” it does clearly show how the proxies glue together
the subsystems over the network by providing both semantic and network-specific
interfaces.

Answer 6.3 Safety and Reliability Architecture

For the Roadrunner Traffic Light Control System, the exercise involves doing the
following (taken from problem chapter):

* Take the collaboration done previously (shown again as Figure 11.9) and do a
separate FTA on each of the fault situations below:

— Both primary and secondary through traffic have GREEN lights

— Dedestrian traffic has a WALK light at the same time that the orthogonal
vehicle traffic has a GREEN light

— All lights are off
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faults are identified and control measures are added, including estimated fault

tolerance times

From the result of this analysis, create a hazard analysis in which hazards and

Determine how architectural redundancy should be added to make the system

single-point fault safe for the analyzed fault situations

collaborate to achieve the desired safety

Draw the safety architecture class or object diagram showing how the elements
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Figure 11.9 Roadrunner collaboration for safery analysis

Unfortunately, UML (and Rhapsody) doesn’t have an FTA diagram editor, so I
used Visio™ from Microsoft® to create the FTA diagrams. Figure 11.10 shows an
FTA diagram for the “all lights green” case. The easiest way to read this diagram is
from the top (the resulting hazardous condition) down; the only way to get both lights
green is for one of them to be green and then the other turns green. For one of them
to turn green in this case, one of three conditions must occur: either the command

to the light is corrupted, the command was issued inappropriately, or a fault in the

light causes it to turn green; and so on, down to more primitive fault events.

The next figure, Figure 11.11, is a fault tree for getting a green light for the road
traffic in one direction while getting a walk light for the pedestrian traffic in the
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Road A light
iaen Transient power
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switch
Memory W Conupted msg
Fault computation  from Road B
Fault light

O ta o Comoter
Figure 11.10 Roadrunner FTA for ‘all lights green” fault

orthogonal direction. The two primary conditions analyzed are 1) the pedestrian
light is already WALK and the vehicle traffic light for the orthogonal road turns
green (the left side of the figure), and 2) the light is already green and then the walk
light turns to WALK (right side of the figure).

Figure 11.12 looks at the last analyzed condition, “All lights off.” If only one
light turned off, the situation might not be unsafe, if the light for the orthogonal
direction turns to RED; however, the situation is clearly unsafe if all lights are off.
Of course, it is not as unsafe as in the first hazardous condition analyzed (all lights
green) because most people, seeing that the light is off, will slow down and proceed
cautiously.” If they see the light is green, however, they will approach the intersec-
tion at full speed and with far less caution. We see in Figure 11.12 that either a
general power failure to all lights or commands to turn off the lights (sent because
of a controller or communications fault) could result in the situation in which all

lights are off.

2

Except in Boston and parts of (OK, most of) Italy.
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Figure 11.11 Roadrunner FTA for “walk and green” fault

The advantage of the FTA is that we can clearly see the logic of the confluence of
conditions and events necessary to create the hazardous situation. It becomes simple
(in principle®) to make the system safe by creating other conditions that must be
ANDed with the identified faults and conditions to result in an unsafe condition.
These “other conditions” are called “safety measures.” For example, in Figure 11.12,
there is a fault called “Power loss to all lights.” Clearly, if the lights have no power,
then the condition arises. However, if we add a UPS (uninterruptible power supply)
to each individual light, that condition can’t arise unless both the main power and
the UPS fail. We can modify the light behavior to make the system safe by making
each light go to RED while on the UPS as well as notify the remote monitoring sta-
tion of the power loss; in addition, we can add “lifeticks” between the lights so that

> Remember, though, the 97th Law of Douglass, “The difference between theory and practice is
greater in practice than it is in theory.” And, of course, the 98th law as well: “The purpose of theory
is to improve practice.”
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Figure 11.12 Roadrunner FTA for “all lights off”” fault

if a light manifests a fault (and so doesn’t respond to the lifetick), the light expect-
ing the lifetick goes into its “fail safe state.” Thus, to arrive at the unsafe condition
under consideration, two independent faults must manifest themselves at the same

time—this is what is meant by the term “single-point failure safe.”

The hazard analysis (Figure 11.13 through Figure 11.15) below summarizes
these faults and adds safety measures. These safety measures, which are typically
the instantiation of safety patterns, constitute the safety architecture. This hazard
analysis is shown in three tables, one per fault. In many such analyses, the hazard
analysis is a single huge table of hazards, faults, and safety measures.

We see in Figure 11.13 the hazard “All Lights Green” and the various faults we
identified in the previous FTA. We then elaborated the hazard analysis with control
measures, and added in (what we hope are) reasonable detection and control action
times. From this, the exposure time and safety are computed.

Figure 11.14 presents the same sort of hazard analysis for the hazard of having
the walk lights in the WALK state while at the same time having the road light for
the orthogonal road in the GREEN state. Many of the faults are the same, but oth-
ers are added, because faults in the walk light system or commands can also lead
to the hazard.

The last hazard analysis, shown in Figure 11.15, shows the safety analysis for the
All Lights Off hazard. From this analysis, the model can be updated to include the
safety measures, and the FTA can be redone. Figure 11.16 shows the FTA for the
“All lights off” condition with the added safety measures. These safety measures are



Hazard Analysis for All Lights Green

Hazard

Fault

Likelihood

Time

power fault in

light

Severity Computed Tolerance | Detection Control Measure Control | Exposure Is
(1 [low] - 10 (0.0 -1.0) Risk units Time Time Action Time Safe?
[high]) Time
All lights | Transient 10 0.08 0.8 seconds 2 0.01 UPS for controller; 0 0.01 TRUE
green power fault to notify remote monitor
controller
Memory fault 10 0.02 0.2 seconds 2 0.01 CRC set and checked every 0.01 0.02 TRUE
access
SW computa- 10 0.03 0.3 seconds 2 0.1 Explicit check for 0.01 0.11 TRUE
tion fault unsafe conditions
Corrupted 10 0.06 0.6 seconds 2 0.05 Message CRC; ACK required 0.02 0.07 TRUE
message
Accidental 10 0.01 0.1 seconds 2 0.01 Buffers zeroed after memory 0.01 0.02 TRUE
message trans- send
mission
SW fault in 10 0.03 0.3 seconds 2 0.5 Lifeticks containing light 0.01 0.6 TRUE
light state sent among lights; if not
received, fail safe initiated and
broadcast
HW fault in 10 0.01 0.1 seconds 2 0.5 Lifeticks containing light 0.1 0.6 TRUE
light state sent among lights; if not
received, fail safe initiated and
broadcast
Transient 10 0.08 0.8 seconds 2 0.01 UPS for each light 0 0.01 TRUE

Figure 11.13 Hazard analysis for all lights green
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Hazard Analysis for Walk and Green

Hazard Fault Severity Likelihood | Computed | Time | Tolerance | Detection Control Measure Control | Exposure Is
(1 [low] (0.0-1.0) Risk units Time Time Action Time Safe?
- 10 [high]) Time
Walk light Transient 10 0.08 0.8 seconds 2 0.01 UPS for controller; 0 0.01 TRUE
and orthogo- | power fault notify remote monitor
nal green to controller
Memory 10 0.02 0.2 seconds 2 0.01 CRC set and checked every access 0.01 0.02 TRUE
faule
SW compu- 10 0.03 0.3 seconds 2 0.1 Explicit check for 0.01 0.11 TRUE
tation fault unsafe conditions
Corrupted 10 0.06 0.6 seconds 2 0.05 Message CRC; ACK required 0.02 0.07 TRUE
message
Accidental 10 0.01 0.1 seconds 2 0.01 Buffers zeroed after memory send 0.01 0.02 TRUE
message
transmis-
sion
SW fault in 10 0.03 0.3 seconds 2 0.5 Lifeticks containing light state 0.1 0.6 TRUE
light sent among lights; if not received,
fail safe initiated and broadcast
HW faule 10 0.01 0.1 seconds 2 0.5 Lifeticks containing light state 0.1 0.6 TRUE
in light sent among lights; if not received,
fail safe initiated and broadcast
Transient 10 0.08 0.8 seconds 2 0.01 UPS for each light 0 0.01 TRUE
power fault
in light
SW Fault in 10 0.03 0.3 seconds 2 0.5 Lifeticks containing light state 0.1 0.6 TRUE
walk light sent among lights; if not received,
fail safe initiated and broadcast
HW fault 10 0.01 0.1 seconds 2 0.5 Lifeticks containing light state 0.1 0.6 TRUE
in walk sent among lights; if not received,
light fail safe initiated and broadcast
Transient 10 0.08 0.8 seconds 2 0.01 UPS for each light 0 0.01 TRUE
power fault
in walk
light

Figure 11.14 Hazard analysis for walk and green lights
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Hazard Analysis for All Lights Off

Hazard

Fault

Severity
(1 [low] - 10
[high])

Likelihood
(0.0-1.0)

Computed
Risk

Time
units

Tolerance
Time

Detection
Time

Control Measure

Control
Action
Time

Exposure
Time

Safe?

All lights off

Power loss to all

lights

5

0.05

0.25

seconds

0.01

UPS to each light;
lifeticks indicate
liveness to other

lights

0.1

0.11

TRUE

Light failure

0.09

0.45

seconds

0.01

photodetector in
light assembly
detects fault; when
detected broadcast
fault to initiate fail
safes

0.01

0.02

TRUE

Communication
failure

0.06

0.3

seconds

0.05

CRCs on messages;
ACK required; state
change only on
ACK receipt

0.02

0.07

TRUE

Controller failure

0.05

seconds

0.05

Explicit check for
unsafe condition;
Lifeticks contain-
ing light state sent
among lights; if
not received, fail
safe initiated and
broadcast

0.02

0.07

TRUE

Figure 11.15 Hazard analysis for all lights off’
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Figure 11.16 Roadrunner FTA for “all lights off” with safety measures

ultimately ANDed with the original faults events, so that to achieve the hazardous
condition both the original fault must occur and the safety measure must fail.

Having completed this analysis, we can update our architecture to include the
safety measures. It is interesting to note that the vehicle detectors do not have an
impact on safety. If they malfunction, either by missing detections or by providing
false detections, the lights will still ensure proper traffic flow. Similarly, the interac-
tion with emergency and priority vehicles are a reliability, not a safety issue. We still
want them to work and so may want to add redundancy for these elements, as we
did for the lights and controller to improve system reliability, but their failure is not
a safety concern. The updated Roadrunner class diagram is shown in Figure 11.17.
Of course, the safety-related behavior, such as checking the CRCs and lifeticks and
notifying the remote monitor of faults, isn’t shown in the class diagram, so some of
these behaviors are indicated with constraints.

It should be noted that we've done both a heterogeneous redundancy specializa-
tion of the Channel Architecture pattern here by providing diverse power supplies
to various system elements, as well as inserting data validity checks in the manner
of the Single Channel Protected pattern.
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Figure 11.17 Roadrunner safety and reliability architecture

The next part of the exercise repeats this work for the Coyote UAV. Since we've
focused previously on developing the reconnaissance management subsystem—
involved in both target identification, tracking, and targeting—we’ll continue in
that vein.

* Create an FTA for the reconnaissance management subsystem that identifies the
safety hazards and risks associated with this subsystem, one per hazard

* From the result of this analysis, create a hazard analysis in which hazards and
faults are identified and control measures are added, including estimated fault

tolerance times

* Determine how architectural redundancy should be added to make the system
single-point fault safe for the analyzed fault situations

* Draw the safety architecture class or object diagram for the subsystem showing
how the elements collaborate to achieve the desired safety.

For the CUAYV, we'll focus on three views with respect to the safety architecture.
First is the system architecture—how the overall system, including the ground sta-
tion, aircraft, and payloads work together. Next is the aircraft architecture—how the

aircraft subsystems interact. Lastly, we'll look inside the Reconnaissance Management
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Subsystem (RMS) to see how the internals of that subsystem function, and how
they relate to safety and reliability.

We will, of necessity, severely limit the scope of our analysis. In a real system, we
would have to look at hundreds of hazards and even more faults, to ensure system
safety and reliability. In this answer, we will limit our scope to hazards directly due
to faults with the reconnaissance data or management.

To begin with, let’s look at the structure of the system under consideration. Figure
11.18 shows the overall CUAV architecture including the ground system, aircraft
and payloads. Figure 11.19 shows the subsystem architecture of the ground system,
although not a great deal of detail about the internal structure of the control or
monitoring stations. Figure 11.20 shows the subsystem architecture of the aircraft
itself. Lastly, Figure 11.21 shows the internal structure of the RMS.
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Figure 11.18 Overall CUAV system architecture
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Figure 11.21 Reconnaissance management yubsystem structure

Given that structural overview, let’s now list the hazards we are specifically

addressing:

target misidentification (i.e., “false positive”)

incorrect target classification or Combat ID (CID)

incorrect location or coordinates

— loss of information about target

lack of (valid) target identification (i.e., “false negative”)

— incorrect target kinematics (vector, flight path, etc.)

loss or corruption of target information either in storage or transmission, e.g.,

incorrect target management (e.g., failure in sensor fusion)

We have focused previously on the reconnaissance management and not the tar-
geting system, so it makes sense to understand how the responsibilities of the RMS
and targeting subsystems differ. The RMS does low-level surveillance of the physical
environment and then identifies elements in the environment that are likely to be
targets of interest. This is the job of the TargetFinder class. The TargetFinder has a set
of TargetSpecs, each of which identifies the observable characteristics of something
to look for—size, shape, image template, color, speed, etc. Once a target is identi-
fied and classified by the TargetFinder, it is put into the list of targets, managed by
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the TargetManager. When appropriate, it can be passed to the Targeting subsystem
as a target at which to fire a missile. The FireControl subsystem is responsible for
guiding the missile to the target under Mission Ops personnel direction.

These faults can be analyzed with FTA. Figure 11.22 looks at the Target Misiden-
tification and Failure to Identify Target hazards; to save space, the safety measures
have already been added (as dashed lines) to this FTA. The primary culprits that

could lead to misidentification, either false or negative, are:

e Communication corruption

* Memory corruption

e Computation fault

* Noise-reduction algorithm is insufficient to resolve the noise

Other than the last, these issues are addressed by adding CRC protection to
messages to be transmitted and to data in situ, on a per-class basis. This protection
must be added to communication links within the aircraft, within the ground sta-
tion, and to the command (low-speed data) and reconnaissance (high-speed data)
links between the two.

Note the use of the single-channel protected pattern in the inclusion of lightweight
data validity checks. Heterogeneous redundancy improves safety through the use of
two computational paths (using different algorithms) for the computation of target
classification, location, kinematics, and CID. In addition, the problem itself also
offers heterogeneous redundancy in that it has two wireless links. It is expected that
the high-speed link will fail due to jamming or noise before the low-speed link. The
low-speed link is to be designed with broad spectrum and built-in redundancy (e.g.,
CRCs) and encryption to handle security. The high-speed link does not have these
measures because 1) there isn’t enough bandwidth to add much redundancy, but
32-bit CRCs are added to the video frames for error detection, 2) the loss of data
isn’t as critical as undetected corruption, and 3) practice has shown that real-time
telemetry interception is not a security risk, since the enemy presumably already

knows where they are ;-).
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Figure 11.22 CUAV FTA for target misidentification

Figure 11.23 shows how the heterogeneous redundancy and single-channel
protected patterns are applied to the RMS:
* Heteregeneous redundancy pattern
—  TargetFinder is replicated using different algorithms to perform preprocessing
and target identification (which also computes CID)
* Single-channel protected pattern
— Command processor validates messages with CRCs
— ImageManager uses CRCs on navigation data messages from the Navigation
subsystem (not shown on diagram)
— Targets are stored with one’s complement (bit-inverted) copies of location
and direction attributes
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Figure 11.23 Reconnaissance management collaboration with safety patterns

—  Image superclass contains a CRC and (not shown) set and check CRC opera-
tions which are overridden in the subclasses

— ImageManager uses algorithmic inversion to “back compute” the original data
from the computation for both compression and encryption operations

— ReconConfiguration uses a CRC and set and check operations to validate
data

—  BIT class performs built-in-test procedures in a separate thread to check the
stack (using “high-water marks™), a parity memory test (supported by parity
in hardware), and checks that all threads are running and issuing lifeticks at
a minimal rate.

The architectural diagrams have not been changed to account for the safety archi-
tecture because the error detection takes place primarily within the subsystems (such
as the RMS) and at the message level between subsystems, using protection means on
each message. If there is data loss because a subsystem goes down, then the mission

ops actor will take appropriate action, such as reverting to another air vehicle.

4 The stack “high-water mark” test simply fills the stack for each task with a known pattern (such as

“A57”) and checks periodically that these values have not been overwritten above (or below, as appro-
priate) a certain position in the stack.
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Answer 7.1

Applying Mechanistic Design Patterns—Part 1

For the Roadrunner portion of this exercise, the application of the adaptor pattern is
very straightforward. The design class diagram is shown in Figure 12.1." The Vehicle-
Detector class is changed from a class to an interface. The adapters subclass both from

a specific implementation class of the specific sensor type and the iVehicleDetector
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Figure 12.1 Detect Vebicle adaptor pattern

I Parts of the collaboration that weren’t affected are

elided from the diagram for simplification.
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interface. The operations from the iVehicleDetector interface are then elaborated
into methods that invoke the specific services provided by the various sensors.

The CUAV problem required the application of the chain of responsibility pattern
to make the use and addition of new image-processing algorithms easier and more
flexible. The first question is where the image processing takes place. Two obvious
candidates are under the control of the ImageManager or under the control of the
TargetFinder. The ImageManager class is responsible for early image processing,
which would naturally include sharpening and enhancement of the images. On the
other hand, the TargetFinder might employ different enhancement methods to find
different kinds of targets, so an argument can be made for both. It is even possible
to apply the CoR pattern twice, once for basic image enhancement and again for
target-specific enhancements.

In this case, we'll apply the pattern to the ImageManager only. In terms of image
processing, we'll include not only image enhancement, but also conversion to a
compressed (JPEG) format, encryption, averaging, and center-surround sharpening
as image-processing steps. We also have a need to undo these steps, so we've applied
the pattern twice, once to do image processing and once to undo some of the steps,
such as encryption and compression. As with the Roadrunner pattern application,
we only show the relevant portion of the collaboration.

You'll note in Figure 12.2 that some of the operations defined for the ImageHandler,
such as compression and encryption, have been removed since they are now handled
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by the image handlers in the chain of responsibility. This small reorganization of
responsibilities is an example of the refactoring we referred to previously.

Answer 7.2 Applying Mechanistic Design Patterns—Part 2

The observer pattern optimizes the interaction between client and server so that
additional clients can be added, and so that data is only sent when it is appropriate
to do so. Each light assembly coordinates the traffic for a single road and direction
for both through and turn traffic, so there are two light assemblies per road, for a
system total of four. There are also a total of eight pedestrian light assemblies (two
per road per side). All these light assemblies must share information to ensure that
the overall system is in a safe state at all times (specifically cross-oriented traffic does
not have non-red or non-Don't Walk at the same time). Figure 12.3 is an object
diagram showing the connections among the light assembly instances. The instance
naming convention assumes the primary road is north-south and the secondary road
is east-west. Thus, the name for the vehicle light instance on the primary road that
faces north is “vPrimaryNorthFacingLight” and the walk light for the secondary road
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Figure 12.3 Light assembly connection topology
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that faces east and is on the north side of the street is name “pSecondaryEastFacing-
NorthSideLight. It’s verbose, but has the advantage of being unambiguous.

Figure 12.3 shows the link topology of the system.? The intersection controller
is in the middle, the white-filled objects are the vehicle lights, and the shaded boxes
are the pedestrian lights. As you can see, the topology is complex and validating that
all the lights are connected to all the correct clients would be a chore.

When we apply the data bus pattern to all the lights and clients (they are largely
the same, after all), the topology is much more straightforward, because the lights
and clients need only a single link to the data bus instance. The responsibility for the
topology creation is distributed to the clients and servers. Each light assembly is a
server, so it must link to the data bus instance and call update() to update its light state.
Each client must subscribe to all the other lights. Note that the intersection controller
is the special case because it is not a light but is a client to all the light assemblies.

The data structure is simple, nothing more than an enumerated value containing
all of the possible states for the light. Two different enumerated types are needed,
one for vehicle lights and one for pedestrian lights.

Each light assembly then maintains a (local) list of all the relevant (cross-traffic)
lights. When those lights change state, the data bus updates the light assembly, which
in turn updates its (local) copy. The behavior of each light then checks consistency
with the other lights, something like this:

//wants to change state to permit traffic to flow (i.e. yellow or green)
Set a global state change semaphore (also in the data bus, but updated by
all lights)
For all cross traffic vehicle lights
If it is not red,
send an error message to the intersection controller
release the global semaphore
exit
For all cross traffic pedestrian lights
If it is not Don’t Walk
send an error message to the intersection controller
release the global semaphore
exit
Change state

Release the global semaphore

This can be optimized somewhat by observing that certain light sets change
together; for example, the walk signals that face each other on the same road and
side of the street change together. Such light sets can be controlled by a single state
change. However, the light set construction may be nontrivial. For example, it is
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not necessarily true that through lights facing different directions on the same road
change together; if the turn lanes are operated in SEQ mode, then the turn light
in one direction is set when the through lanes in the same direction are on but the
opposing traffic on the same road must be prevented from going at that time. So,
in some cases, such light sets are mode-specific.

Figure 12.4 shows the Detect Vehicle collaboration updated to include the data
bus pattern. Note that the shared data are the light states. There are two data classes
represented, one for the vehicle light states and one for pedestrian light states. Note
that the clients and server light assemblies are replicated on the diagram—this is
simply to minimize line crossing. On the server side, they have a composition with
a unary multiplicity to the data they are providing, while on the client side, they
have a * multiplicity to the data they get from their peers.

The datalD is an enumerated type that identifies the road (PRIMARY or SEC
for secondary), whether it is THROUGH or TURN (vehicle lights only), whether
it faces north, south, east, or west (N, S, E, W) and, in the case of the pedestrian
lights, which side of the road it’s on (the last character N, S, E, or W). This differ-
entiates the data from one server from all the others. Note that there will be at least

one instance of light state data for each enumerated value in the IDType.

The global semaphore was added as an attribute of the data bus because it affects
all data—a change in the state of a single light is fundamentally a change in the system
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state. The lock() operation returns TRUE if the attempt to lock was successful and
FALSE otherwise; similarly, the unlock() operation returns TRUE if the attempt
to unlock was successful and FALSE otherwise (although this should never happen
unless the system contains an error).

While the topology shown in Figure 12.4 may seem complex, in reality it is an
order of magnitude simpler than the topology shown in Figure 12.3 at the cost of
some additional objects and the memory that they require.

The second half of this problem requires the command pattern be applied to the
Acquire Image collaboration. The command pattern is straightforward and requires
that the command hierarchy be identified, as well as how the commands invoke
services on the existing elements in the Acquire Image collaboration. In addition,
it is necessary to specify how the command objects come into existence.

The solution is shown in two different class diagrams. The first, Figure 12.5,
shows the generalization taxonomy for the command classes and how the commands
are created. Specifically, they get passed to the command processor via the TCP/IP
Protocol Stack encapsulated into datagrams, one command per datagram. Once the
datagram is received, the command is extracted and placed into a command queue
for processing. The commands themselves are specialized into two kinds—configu-
ration commands and direct requests for actions or data.
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Figure 12.5 Acquire Image command structure
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Each of the specific commands is a specialized form of command and contains
relevant data and a specialization of the execute() command to invoke the appropri-
ate service of the elements of the collaboration. The command processor has the
responsibility to create the link between the command instance and the appropriate
collaboration object and then invoke the command’s runCmd() method. Figure
12.6 shows the associations from the various commands (shaded for emphasis) to
the collaboration classes.
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Answer 7.3 Applying Detailed-Design State
Behavior Patterns

The any state pattern is usually simple to apply and the situation with the light
assembly state machine is no exception. Before we look at the solution, let’s look at
what the high-level state machine would look like if we don’t use the pattern. Figure
12.7 shows the resulting rat’s nest. Note that, except for the Off state, each of the
states in the figure is a composite state containing a possibly complex state machine
inside. Because the depiction of those state machines is deferred to a separate dia-
gram, they are referred to as “submachines.”

/

T )
! Ve

Figure 12.7 Light assembly high-level statechart before any state pattern

With the applied pattern, the state machine is simpler and far easier to under-
stand, as you can see in Figure 12.8. The light assembly can transition from any
mode to any other mode directly, just as in the previous figure, but this one can
actually be read!

As mentioned, each of the states in Figure 12.8 holds a separate state machine
for specifying the particular behavior of that operational mode. We've only detailed
one of these so far, the fixed cycle mode. Rhapsody provides a simple shortcut for
navigating to that submachine; simply click the “submachine icon” contained within
the state and the submachine diagram opens. The submachine for fixed cycle mode
is shown in Figure 12.9.
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Figure 12.9 Light assembly fixed cycle mode submachine

For the CUAV part of this problem, the first step is to make the ImageManager
a composite class containing the device drivers as parts. Figure 12.10 does this and
links the appropriate device driver to the correct ports.
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Figure 12.10 ImageManager with parts

Now, we want to specify how the classes of these parts relate to each other; spe-
cifically, how they are subclasses of a base class called SensorPayloadDeviceDriver.
Figure 12.11 shows this. Note, by the way, the small state icon in the upper righthand
corner of the classes. The model includes a state machine for the SensorPayload-
DeviceDriver class and because the specific device-driver classes are subclasses of
this base class, they automatically inherit its state behavior.

SensorPayloadDeviceDriver &

=)
Device Driver Taxonomy

RadarDeviceDriver = FLIRDeviceDriver o OpticalDeviceDriver @

Figure 12.11 Sensor device driver taxonomy
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The next step was to elaborate the state machine for the SensorPayloadDevice-
Driver. This state machine is shown in Figure 12.12. Note the use of the any state
pattern to handle the desired semantics of the evDisableSensor and evImageStart
events. The state machine uses both actions on transitions as well as state entry
actions. If desired, the state machine can be written using only actions on transitions
or only state exit actions.’

[ On
off evEnableSensor
> WaitingT‘OGetRaW[mage F e ——
evDisableSensor ‘

AddingMetaData

Constructinglmage }q
evimageStart/ ) evimageData/
initializelmage(); |- — ,‘ ./ addDataTolmage();

evimageComplete

 J
. Pl
Preprocessinglmage &2

“bimageHandler->handle(); [ "f't'H.eI mage->addMetaData();

Figure 12.12 Sensor payload device driver state machine

The last aspect of this problem is to add the polling state pattern to this state
machine to separate the semantic actions and states (shown in Figure 12.12) from
the polling behavior. The result is shown in Figure 12.13.

This is a relatively straightforward application of the polling state pattern. The
upper and-state replicates the semantics of the previous state machine. The lower
and-state realizes the polling behavior. The use of the conditional pseudostate allows
different transition branches to be taken based on the result of the condition of
the success value returned from the acquireData() operation. Note the use of an
anonymous state (state_8). Why is that there?

UML state machines provide what is called run-to-completion behavior. What
this means is that each transition, including the guard, predecessor state exit actions,

transition actions, and subsequent state entry actions are run completely before the

3 Exercise for the reader ... ©
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tm(POLL_TIME)/
success = acquireData();

Figure 12.13 Sensor payload device driver with polling state pattern

next event is processed. However, the guards are executed first before any actions
are executed. This means that if the conditional pseudostate is connected to the
tm() transition, the value of success will be used before it is set by the execution of
the acquireData() action. We need some way to force the execution of this action
before the guards are evaluated. One solution, used in Figure 12.13, is to put a state
in between the conditional pseudostate and the tm() transition. Because the tm()
transition terminates on a state, all the actions are executed. The transition from
state_8 to the conditional pseudostate is null-triggered, so it fires immediately after
the run-to-completion step. Since the previous step assigned success a value, then

it can be used in the guards.

Note, however, a possible pitfall. If success returns a value other than those listed in
the exiting transitions then the state machine would be stuck in state_8 because there
would be no correct exiting transition. For this reason, we've included an else transi-
tion guard to handle both the case NONE and any unexpected returned value.

Additional Work

1. Fill out the remaining states for different light modes of Safe, Cautionary, Adap-

tive, and Responsive by creating new submachines for those nested states.

2. Find other classes in the collaboration that are “reactive” (i.e., exhibit state

behavior) and construct state machines for them.
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Answer 7.4 Applying Detailed-Design Idioms

The solution to this problem lies in creating state machines for the lights that can
generate or handle the appropriate exception events and go to the appropriate failsafe
state when a fault occurs. The first state machine is for the vehicle light, shown in
Figure 12.14. The isOnGreen(), isOnYellow(), and isOnRed() operations invoked
the services of the appropriate photo detector and return TRUE if it detects that
the specified light is on and FALSE otherwise. The exNoGreen, exNoYellow, and
exNoRed events represent the exceptions that are raised if a particular light is out.
The appropriate action in this case is to go to the Red state; if that is the light that
is out, then no safe action can be taken.

VehicleLightStates
evOff! g
offGreen();
offRed(): W FlashingYellow
offYellow(); ~_| I
{ on ] l¢ _| evFlashvelow/
™ offGreen(); onYellow(); offRed();
e e : O T \if (tisCnYellow() {
onGreen(); offRed(); offYellow(); tm(QNTIME) | | tm(OFFTIME)/ | itsOwner->GEN(exNoYellow):
if (lisOnGreen()) { r ) offYellow(); onYellow(); GEN(evRed)
itsOwner->GEN(exNoGreen); | Green —_— I8 '
GEN(evRed); — o i
13 J
evYellow/
offGreen(); onYellow(); offRed(); Yelow FlashingRed
if (lisOnYellow()) { S —
itsOwner->GEN(exNoYellow); On ~— e
}:GEN(eVREd)' i _ evFlashRed/
tm(ONTIMEY | {m(OFFTIME)! ", affGreen(), offYellow); onRed();
fonRed() ) offRed(); | onRed(); /i (lisOnRed()) {
evRed/ o Red _— /" itsOwner->GEN(exNoRed);
offGreen(); offYellow(); onRed(); .~ | off || ¥
if (lisOnRed(}) { L
itsOwner->GEN(exNoRed); . » e
¥ — ‘

Figure 12.14 Vebicle light state machine

As can be seen in Figure 12.15, the pedestrian light state machine is very similar,
if slightly simpler.

The next two figures, for the vehicle light assembly and pedestrian light assembly,
respectively, handle the events as appropriate. However, rather than sprinkling the
behavior throughout the detail submachines of the state machines, it is appropriate

to handle it at the highest level. The first of these is the Vehicle Light Assembly state
machine, in Figure 12.16.

A fault state has been added; it is differentiated from the Safe state so that the
data bus can easily indicate to the clients the situation. The data bus pattern IDType
must be elaborated to include the new fault state so that clients can detect that it
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PedestrianLightStates
evOfil =
offWalk() ([ T — »f Off [ FlashingDontWalk
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( on | - *, evFlashingDontWalk/
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— / if (lisOnDontwalk()) {
evWalk/ « —f  itsOwner->GEN(noWalk);
onWalk(); offDontWalk(); R GEN{evDontWalk);
if‘(!isOnWaIk()H ‘::_\. Walk tm(ONTIME)/ tm(OFFTIME)/ ¥
itsOwner->GEN(noWalk); - _ — offWalk(); onWalk():

GEN(evDontWalk);
! ¥

k o
evDontWalk/ ( DontWalk |

offWalk(); onDontWalk(}:-.

if (lisOnDontWalk()) { A !
itsOwner->GEN(noWalk);
GEN(evDontWalk); fonDontWalk();

b °

Figure 12.15 Pedestrian light state machine

went into the fault state. Also notice that while the vehicle light identifies a number
of different faults, only one shows up here. Events are generalizable in the UML.*
The exLightFault is defined in the model as the base class for all the light faults,
both vehicular and pedestrian. This means that only a single transition must be
represented in the client state machine, as long as the treatment of each is the same
(which in this case, it is).

The astute reader might notice that it isn’t necessary to use the and-state in the
vehicle light assembly state machine. We could have just used the exLightFault event
directly on the main semantic state machine. While this is true, we expect more fault
detection and handling as the detailed design progresses and applying the pattern
here will have a beneficial effect later, as more fault events and conditions are identi-
fied. If this isn’t the case, the state machine can easily be simplified downstream by
removing the and-state and changing the transition going to the fault state to be
triggered by the exLightFault event.

The last state machine, shown in Figure 12.17, is for the pedestrian light assem-
bly. This state machine incorporates the exception state pattern in the same way as
the vehicle light assembly.

#  There is no way to draw this in Rhapsody, but you can specify it. Use the generalization relation

among events in the Features Dialog for the event.
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Figure 12.16 Vehicle light assembly state machine with exceptions
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Figure 12.17 Pedestrian light assembly state machine with exceptions
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The CUAV problem is arguably mechanistic rather than detailed design, but
is nevertheless appropriate for the chapter and the application in question. The
application of the pattern is very straightforward. Figure 12.18 shows the vari-
ous sensor device drivers connecting to ports. These ports will be connected to an
instance of the Watchdog class at run-time. This is implied by the association from
the ImageManager Class near the port. Because the device drivers must be a subclass
of WatchdogClient, this is shown in a separate diagram, Figure 12.19. The safety
executive has an association to the ImageClient and so may destroy it and create a
new one should the watchdog fire. If desired, the safety executive could also signal
the Reconnaissance Management subsystem to perform that task as well.

atchar EafehyExceulive B
i Acquire Iy e Collaburation with Walchdoy Patlm
S highestPuppylDiint il added tn the Polling State Pattem
Ehandler aultjvoid
The associationis shown betaeen the
imaddMonitorimeoutiong)-int ImageManager and the Watchdng, bt inreaiity, in
stroke(menitoriCiiny veld, X il anobject view, a set of links would exist between the
timeoutr aultpuppyiD ingvoid; WatchdogPort and the instance of the Watchdog
dlass,
BUPRYID.
1
\WalchdoaPort A
ImageManager
iReconData
pDatalink
T IheFURDeviceDiiverFLIRDeviceCirver )
phavData
iNavDala
B pConfig
‘WatchPuppy B
Humeoutiong
= pupgrdn int
T InaRateTedseDmer Srhver . ' theOpticalDevieeDrivor. OpticalDeviceDriver a

[EovEnablovoid

BevDisablegvold

Ifevstrokegvoid

pRadar | prur | poiptical rL
iimage Q) ilmage g image

Figure 12.18 Acquire Image collaboration with Watchdog pattern

The state machine for the WatchPuppy is unchanged from the pattern specifica-
tion, but is shown in Figure 12.20.

Lastly, the SensorPayloadDeviceDriver’s state machine is modified to stroke the
Watchdog. Because the device driver polls periodically, that is a convenient place
to add the Watchdog stroke behavior. The updated state machine is shown in
Figure 12.21.
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WatchdogClient
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Figure 12.19 Sensor device-driver taxonomy with watchdog pattern

WaitingForTimeout

Figure 12.20 WatchPuppy state machine



356 Chapter 12

| on

WaitingToGetRawlmage |« S
. > I
I evEnableSensor/ \\
Off GEN(evstartPolling): \
evDisableSensor

GEN(evStopPolling):

Constructinglmage

h

evimage Data/
L/ addDataTolmage(); A
e

evimage Start/
initializelmage()(

/ evimageComplete fl

g ‘//
| /
Preprocessinglmage @ g

“zimageHandler->hand... ’> ~— fhelmage->addMetaDataf);

evStartPolling

NotAcquiring

WaitingToAcquire

[else] T

[success == NEW_IMAG
GEN(evIimage Start)

_evStopPolling

[success == ADD_DATA}/
GEN(evimageData);

tm(POLL_TIME)/
success = acquire Data();
QUT_PORT(Watchport)->stroke(puppylD);

Figure 12.21 Sensor payload device-driver state machine




The Roadrunner Intersection
Controller System Specification

Overview

The Roadrunner™ Intersection Controller (RIC) is an automobile intersection
controller that controls individual traffic lights, subsurface and above-surface
vehicle detectors and pedestrian button signal sources for a single intersection. Each
intersection is limited to two intersecting roads, and supports both pedestrian and
vehicular traffic in both directions along the road; options include one-way roads
and turn lanes. The RIC can be programmed from a front panel display (FPD) or
a remote traffic manager via a wired Ethernet interface, such as the Coyote Traffic
Management System, available separately.

The Intersection Controller (IC)

Each intersection is controlled by a separate intersection controller (IC) that may
be tuned manually from a secured front panel or through a remote network con-
nection. The intersection controller supports up to six vehicular lanes (three in each
direction, including a turn lane), which may be subsurface passive induction loop,
or above surface infrared or radar detectors. Pedestrian lights and buttons are sup-
ported in each direction. Initial setup of the intersection controller shall configure

the number of sensor sources for the intersection.

Each intersection controller shall have a panel control that allows direct local
configuration and mode setting.

In addition to all normal operational modes, the RIC shall have a parameter
to respond to both priority and emergency vehicle transponders. Priority vehicle
transponders are used primarily for mass transit vehicles (e.g., busses) and allow the
optimization of their schedules. Emergency vehicle transponders indicate an approach-
ing emergency vehicle (typically fire and police agencies). Such transmitters shall be
highly directional so that it is possible to identify which road (primary or secondary)

357
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Figure A.1 Intersection

and which lane the vehicle is in. Both priority and emergency modes are only available
with the above surface infrared and radar vehicle sensor configurations.

For priority vehicle transmitters, when activated and when the Priority Active
parameter is set to TRUE, then when the transponder is within range of the intersec-
tion, the intersection shall either extend the through traffic GREEN by 10 seconds
or, if the through traffic light is RED, shall shorten the cross-traffic light green by
10 seconds. This is to expedite priority traffic through the intersection.

For emergency transponders, when activated and when the intersection has its
Enable Emergency Traffic parameter set to TRUE, then when the transponder is
within range of the intersection, the intersection shall immediately cycle the lights
to RED for cross traffic and GREEN to same-direction traffic; with all turn lanes
set to RED. If the same-direction traffic is already GREEN, then the GREEN time
shall be extended. The light shall stay in the emergency state (GREEN for same
direction, RED for cross direction) until 5 seconds after the transponder has passed
the intersection or been disabled. Any intersection traffic priority processing shall
be aborted in the presence of an active emergency transmitter.

Configuration Parameters

A number of configuration parameters may be set that apply to all or many modes.
Parameters specific to a particular mode are described within that mode. All param-
eters may be set on the front panel or set via the RIC, if present.
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Table A. 1
Parameter Value range Description

Commanded Mode (CMp) | 0..5 Sets the currently active mode (default 0)

Primary Road (PRp) 0.1 Identifies which road is primary (default, first
inputs)

Primary road directions SINGLE, Identifies if the primary road is one-way

(PRD) DUAL (SINGLE) or two-way (DUAL) (default DUAL)

Secondary road directions | SINGLE Identifies if the secondary road is one-way

(SRD) DUAL (SINGLE) or two-way (DUAL) (default DUAL)

Vehicle detector type NONE, SPLI, |Identifies which kind of vehicle detectors are used.

(VDTp) ASI, ASR Note: all active lanes within an intersection must
use the same type of vehicle detector (default
NONE)

Wireless Frequency (WFp) |0..10 Selectable from 10 wireless frequencies (default 0
— NONE)

Primary Turn Lanes (PTLp) | FALSE, TRUE | Indicates whether primary road has separate turn
lane detectors (default FALSE)

Secondary Turn Lanes FALSE, TRUE | Indicates whether secondary road has separate turn

(STLp) lane detectors (default FALSE)

Turn Lane Mode (TMp) SIM, SEQ If the turn mode is SIM, then turn lane lights
for both directions activate simultaneously; if
the mode is SEQ, then the turn lights for both
directions are done sequentially, and the turn light
GREEN occurs at the same time as the through
light GREEN.

Primary Pedestrian (PPp) | FALSE, TRUE | Indicates whether primary road has pedestrian
buttons and walk indicators (default TRUE)

Secondary Pedestrian (SPp) | FALSE, TRUE | Indicates whether secondary road has pedestrian
buttons and walk indicators (default TRUE)

Priority Active (PAp) FALSE, TRUE | When TRUE, RIC receives and responds to the
presence of signals from priority transponders
(note: only valid with above-surface infrared and
radar vehicle detectors) (default FALSE)

Emergency Active (Eap) FALSE, TRUE | When TRUE, RIC receives and responds to
the presence of signals from emergency priority
transponders (note: only valid with above-surface
infrared and radar vehicle detectors). (default
FALSE)

Current Time Hh:mm:ss Current time of day in 24-hr format (no default)

Current Date M:D:Y Current date month:date:year (no default)

Morning Start Hh:mm Start of morning rush mode (default 06:00)
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Table A.1 (continued)

Parameter Value range Description

Morning Mode Mode Mode of the intersection for morning rush (default
0)

Midday Start Hh:mm Start of midday traffic mode (default 10:00)

Midday Mode Mode Mode of the intersection for midday traffic
(default 0)

Evening Start Hh:mm Start of evening rush mode (default 16:00)

Evening Mode Mode Mode of the intersection for evening traffic
(default 0)

Night Start Hh:mm Start of night mode (default 21:00)

Night Mode Mode Mode of the intersection for night traffic (default
0)

The intersection shall be able to perform vehicle counting and produce the follow-

ing performance statistics:

Table A.2

Parameter

Description

Primary vehicle count

Number of vehicles that have passed through the intersection since
manual reset (primary road)

Primary traffic count
morning

Count of vehicles through the previous morning period, or the
current morning period if active

Primary traffic count
midday

Count of vehicles through the previous midday period, or the
current morning period if active

Primary traffic count
evening

Count of vehicles through the previous evening period, or the
current morning period if active

Primary traffic count night

Count of vehicles through the previous night period, or the current
morning period if active

Secondary vehicle count

Number of vehicles that have passed through the intersection since
manual reset (secondary road)

Secondary traffic count
morning

Count of vehicles through the previous morning period, or the
current morning period if active

Secondary traffic count
midday

Count of vehicles through the previous midday period, or the
current morning period if active

Secondary traffic count
evening

Count of vehicles through the previous evening period, or the
current morning period if active

Secondary traffic count
night

Count of vehicles through the previous night period, or the current
morning period if active
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Intersection Modes

The RIC supports a number of different operational modes. Modes may be set on
the secured front panel for the intersection, or they may be set by the RIC.

Mode 0: Safe Mode

This mode is the default when the system has not been configured. All vehicle lights
outputs are set to FLASHING RED and pedestrian lights are disabled. This mode
persists until another mode is selected. Flash cycle time is 75% “on” duty cycle on
at a rate of 0.5 Hz.

Mode 1: Evening Low Volume Mode

In this mode, the designated primary road is set to FLASHING YELLOW; second-
ary road is set to FLASHING RED, and pedestrian lights are set to off. Same cycle
times as in Mode 0 shall be used.

Mode 2: Fixed Cycle Time

Mode 2 is the most common operational mode. In this mode, the lanes cycle
GREEN-YELLOW-RED in opposite sequences with fixed intervals. The system
shall ensure that if any traffic light is non-RED, then all the lights for cross traffic
shall be RED and pedestrian lights (if any) shall be set to DON’T WALK. Note
that the turn lane times and/or pedestrian times are only valid in this mode if (1) the
turn lane and/or pedestrian parameter is set TRUE in the RIC system parameters
and (2) if a signal from the appropriate detector determines the existence of waiting
traffic for the turn or pedestrian light.

The durations of the light times shall be independently adjustable by setting the
appropriate parameters (see below). Note that, in the table, the values in parentheses
are defaults.

Table A.3 Mode 2 parameters

Parameter Value type Description
Reset Parameters FALSE, TRUE | (FALSE) Sets all the parameters for
Mode 2 to defaults
Primary Green Time (PG2) |10 to 180 (30) Length of time the primary green
seconds light is on

Primary Yellow Time (PY2) |2 to 10 seconds | (5) Length of time the primary yellow
light is on

Primary Red Delay Time | 0 to 5 seconds | (0) Length of time between when
(PR2) primary red light is turned on and the

secondary green light is activated
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Table A.3 Mode 2 parameters (continued)

Parameter

Value type

Description

Primary Walk Time (PW2)

0 to 60 seconds

(20) Length of time the primary WALK
light is on when the primary GREEN
light is activated

Primary Warn Time (PA2)

0 to 30 seconds

(10) Length of time the primary
FLASHING DON’T WALK light is
on after the WALK light has been on

(PT2)

Primary Turn Green Time

0 to 90 seconds

(20) Length of time the primary turn
light is GREEN. Note: only valid when
the Primary Turn Light parameter is
TRUE.

(PZ2)

Primary Turn Yellow Time

0 to 10 seconds

(5) Length of time the primary turn
light is YELLOW. Note: only valid
when the Primary Turn Light parameter
is TRUE.

The default values depend on the system configuration.

Table A.-4 Default cycle times for Mode 2

Turn Ped | Green | Yellow | Red | Walk | Dont | Turn Turn
Lane | Signal Walk | Green | Yellow
F F 30 5 0 0 0 0 0
T F 30 5 0 0 0 15 5
F T 50 5 0 15 5 0 0
T T 50 5 0 15 5 15 5

The values in Table A.4 are true for each direction, independently. Thus, if the

primary road has a car waiting in its turn lane and a pedestrian walking, but the

secondary road has neither, then the following timing diagram represents the cycle

times for simultaneous turn lane mode (i.e., the turn lanes in both directions for

a road turn together and the straight traffic doesn’t begin until the turn lanes have
cycled to Red).
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Scenario: Pedestrian and turn lanes enabled 001

Preconditions: Secondary light is GREEN, Primary is RED; Car waiting
in primary turn lane; pedestrian waiting for primary walk signal; 5s left
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Figure A.2 Roadrunner Mode 2 timing diagram

Mode 3: Responsive Cycle Mode

Mode 3 provides a fixed cycle time when secondary road is triggered by either pedes-
trian or vehicle. That is, it operates exactly like Mode 2 except that in the absence
of cross-traffic signals (vehicle or pedestrian), primary road or primary pedestrian
signals, the system shall cycle to the default condition: primary through lights are
GREEN, primary turn lights are RED, secondary through and turn lights are RED,
and all pedestrian lights DON"T WALK. As long as the signal is refreshed within the
GREEN or WALK times, the currently active vehicle or walk light shall be refreshed.
If the appropriate interval elapses without a fresh vehicle or pedestrian signal, then
the intersection shall cycle to the default state. The default shall be maintained for at
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least the minimum duration of the Primary Green Time , as specified by the Mode
3 parameters. If there are both turning vehicles and pedestrians waiting along the
same road, they shall be handled in same order as in Mode 2 (turn lane first, then
pedestrians). If a road’s turn lane is GREEN and the pedestrian signal occurs along
the same road, then the turn lane shall cycle to RED, and the pedestrian lights shall
cycle to DONT WALK. If there is waiting traffic in both roads of the intersection,
then the intersection shall cycle as if it were in Mode 2 until no signals are received
for the cycle times associated with the signals.

The same parameter set is used as in Mode 2, except the system responds to them
with Mode 3 behavior, when Mode 3 is the selected mode.

Mode 4: Adaptive Mode

Mode 4 is for intersections with higher density traffic. In this mode, the intersec-
tion adapts to the local history of traffic by adjusting the cycle times depending on
traffic density. This requires vehicle-counting behavior from the vehicle detectors.
This is similar to Mode 2 and has the same parameters, plus:

Table A.5 Mode 4 parameters

Parameter Value type Description
Averaging Interval (Alp) 10.. 120 (30) Period over which traffic volume
minutes is averaged to compute the relative
density between the two roads
Minimum Density 10 .. 1000 | (100) Specifies the minimum num-
(MDp) ber of vehicles, from both roads,

that must have traversed the inter-
section before adaptive extension

will be employed
90% 0..60 (30) Length of time that a road’s
seconds green time may be extended due

to higher traffic volume when the
road’s traffic is 90% of total inter-
section traffic volume

80% 0..60 (20) Length of time that a road’s
seconds green time may be extended due
to higher traffic volume when the
road’s traffic is 80% of total inter-
section traffic volume
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Table A.5 Mode 4 parameters (continued)

Parameter Value type Description
70% 0..60 (10) Length of time that a road’s
seconds green time may be extended due

to higher traffic volume when the
road’s traffic is 70% of total inter-
section traffic volume

60% 0..60 (5) Length of time that a road’s
seconds green time may be extended due
to higher traffic volume when the
road’s traffic is 60% of total inter-
section traffic volume

The Vehicle Detector

Three types of vehicular detectors shall be supported: subsurface passive loop
inductors (SPLIs), above-surface infrared sensors (ASIs) and above-surface radars
(ASRs).

Subsurface detectors shall use a wired interface to communicate with the control-
ler, while ASIs and ASRs shall support both wired and secure wireless communication.

All vehicle detectors shall be able to perform vehicle counting.

In addition, ASIs and ASRs shall be able to receive directional transmissions from
priority vehicle and emergency vehicle transmitters. The maximum range of such
reception shall be no less than 250 feet and no more than 1000 feet.

Figure A.3 shows the relevant measures for both ASI and ASR detectors. When
a vehicle enters the detection area (shown as the shaded area in the figure), the
detector shall report the presence of a vehicle. Separate detectors are used for each
lane in each direction.
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Figure A.3 Infrared and radar vehicle detector

Vehicular Traffic Light

Two kinds of traffic lights are supported: the standard three-light model and the
4-light model, the additional light being for a green turn arrow. When the intersec-
tion is allowing turn lane turns with the four-light model, then the green arrow

shall be on.

If the traffic light can no longer detect that it is connected to the intersection
controller, it shall FLASH RED. This shall occur in no longer than 10 seconds from

a communications or RIC failure.
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Pedestrian Light and Sensor

The pedestrian light is a two-signal light that can either be in the state of WALK,
FLASHING DON’T WALK, or DON’T WALK, as shown in Figure A.5. If the
light no longer detects that it is communicating with the RIC, it shall go to a state
of DON’T WALK within 10 seconds of the communication or RIC failure.

S _
00 @

Figure A.4 Three- and four-signal traffic lights

Figure A.5 Pedestrian light
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Front Panel Display

The front panel display (FPD) is an enclosed front panel display secured with
a mechanical key access lock. The FPD provides an LCD for viewing information and
keypad for entering information. The front panel display also has a wired Ethernet
interface so that a local or remote network can view or set the values known to
the system.

The FPD shall support the following choices as menus:
* Intersection Configuration Setup
* Mode 2 (Fixed Cycle Time) Setup
* Mode 3 (Response Cycle) Setup
*  Mode 4 (Adaptive Cycle) Setup
* Intersection Statistics Display
* Device Manufacture Display

The FPD shall have a set of front panel keys and knobs as shown in Figure A.6.
The turn knobs are used for menu selection and item selection. The numbers are for
entering values; the arrow keys are for moving from field to field within segments of
a parameter (such as mm:dd:yy for month:day:year date format). The Item Selection
knob allows the selection of a parameter to change (if changeable). Before a param-
eter can be changed, it must be selected and then the user must press the EDIT key.
Now the values can be entered with the keypad (if numeric) or selected from a list
(if enumerated). When a change is made, it must be either confirmed by pressed
the CONFIRM key or the change aborted with the ABORT key. The RESET key
returns the value to the factory default if a current item is in the edit mode; or resets
all parameters on the page to their defaults if no item is currently being edited.

The front panel has a power button that must be held down for 5 seconds before
the power status can be changed. An LED shows RED if the controller is off but is
receiving power, YELLOW if the controller is on but running off battery (UPS) or
GREEN if on and operating from mains.

The FPD supports four Ethernet ports for external interfacing and digital I/O
ports for interfacing with the lights and sensors. Software may be uploaded via the
Ethernet power from a service technician’s laptop.
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Intersection: B23

Parameters:
Commanded Mode (CMp) 5]
Primary Road (PRp) 1
Primary road directions (PRD) DUAL Current Selection
Secondary road directions (SRD) DUAL
Vehicle detector type (VDTp) ASI L
Wireless Frequency (WFp) 6
Primary Turn Lanes (PTLp)
Secondary Turn Lanes (STLp) TRUE
Turn Lane Mode (TMp) SEQ
Primary Pedestrian (PPp) TRUE
Secondary Pedestrian (SPp) TRUE
Priority Active (PAp) TRUE
Emergency Active (Eap) TRUE 10 Connector
Current Time 17:05:26 g[:(:;[;’s g
Current Date 11:26:07 lights
Morning Start 07:00
Morning Mode 4
Midday Start 10:00
Midday Mode 3
Evening Start 15:30
Evening Mode 4
Night Start 11:00
Night Mode 8

;I il il EDIT
Menu ;‘ i‘il LI Iltem
Select E = E == Select
EI L‘ ﬂ RESET

Roadrunner Traffic Light Control System

Figure A.G Front panel display

The FPD supports secure wireless communication with up to 50 devices. Security
includes 64-bit encryption of data and MAC address filtering. The wireless devices
are primarily used to interact with infrared and radar vehicle sensors, but may also
be used for connecting with a service technician’s PC. The set up information for
wireless, other than the frequency, is not available on the FPD and must be uploaded
from the service technician’s laptop. The range of the wireless connection shall be no
less than 200 feet nor more than 1000 feet with an unobstructed line of sight.

Remote Communications

The RIC provides wired 10/100 Ethernet interfaces for remote monitoring and
management (see the FPD). All parameters available on the front panel may be
requested or set via this interface. In addition, traffic statistics may be viewed or
reset via this interface.
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All components of the RIC that require power will accept 220-240 volts. Unin-
terruptible power supply (UPS) option is available to provide 1-hour or 10-hour
functionality in the absence of line power. When the power is on, the UPS battery
shall recharge. When running on UPS, the power light on the front panel display
shall be RED. When running on main power, but charging the battery (and bat-
tery is at less than 90% capacity), the power light shall be AMBER. When on main
power and battery is at 90% or more capacity, or when on main power and the UPS

option is not present, the power light shall be GREEN.



The Coyote Unmanned Air Vehicle
System (CUAVS) Specification

Overview

The Coyote Unmanned Air Vehicle System (CUAVS) is a system solution to
medium-range reconnaissance in hostile environments with limited attack capabil-
ity. It is a medium-range, long-endurance UAV system that can carry a variety of
payloads to assist in ground, air, and sea operations. A full CUAVS consists of four
Coyote Unmanned Air Vehicles (CUAVs) and a ground Coyote Mission Planning
and Control system.

Primary CUAV System Components
The Unmanned Air Vehicle (UAV)

The Coyote UAV is meant to be a multipurpose reusable UAV with multimission
capability. It is meant to operate at altitudes of up to 30,000 feet with ground speeds
of up to 100 knots (cruise) and 150 knots (dash) and carry a payload of up to 450
Ibs for durations in excess of 24 hours. The Coyote is meant to fly unimpeded in
low-visibility environments while carrying either reconnaissance or attack payloads.
While controllable from the ground station CMPCS, it is also capable of flying
complex flight plans with specific operational goals of systematic area search, ground
route (road-based) search, and orbit surveillance of point targets. Coupled with
manned control from the ground, the Coyote provide sustained 24-hour flight with
real-time visual, infrared or radar telemetry, with target recognition preprocessing.
Communications are jam-resistant, although need not be anti-jamming in a high
ECM environment. Control commands shall be encrypted while telemetry data
can be compressed but unprotected. Telemetry rates for visual telemetry support 30
frames-per-second (fps) at 640 x 400 resolution. Range of flight is meant to be fully
supported within line of sight (LOS) range but since the Coyote also has the ability
to be passed among different CMPCSs, its range is considerably greater than LOS.

371
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For navigation, the Coyote has on-board global positioning system (GPS) based
navigation as well as being directly controllable from the ground station.

Unlike many smaller UAVs, the Coyote does not require specialized launch and
recovery vehicles. It can use a short runway for either automated or remote-con-

trolled takeoff and landing.
The Coyote Mission Planning and Control System (CVIPCS)

Mobile CMPCS with capability to control up to four UAVs with a manned control
station per UAV that fits into a smaller towable trailer. Each control station consists
of two manned substations, one for controlling the CUAV and one for monitoring
and controlling payloads. If desired, both functions can be slaved together into a
single control substation. Control of the aircraft shall consist of transferring naviga-
tional commands which may be simple (set altitude, speed, direction), operational
(fly to coordinate set, orbit point, execute search pattern, etc.), planned (upload
multisegment flight plan) or remote controlled with a joystick interface. Stable
flight mechanics shall be managed by the aircraft itself but this can be disabled for
remotely controlled flight.

The CMPCS displays real-time reconnaissance data as well as maintaining
continuous recording and replay capability for up to 96 hours of operation for four
separate CUAVs. In addition, with attack payloads, the Coyote can carry up to four
Hellfire missiles with fire-and-forget navigation systems.

Coyote Payloads

The Coyote UAV shall be easily configured to handle any of several different surveil-
lance and reconnaissance payloads (video, forward-looking infrared [FLIR], radar),
countermeasures (electronic countermeasures [ECM] and electronic counter-coun-
termeasures [ECCM]) and attack payloads (Hellfire missiles). The payloads are
primarily controlled from the ground, but certain functionality, such as search for
target, can be assigned to the UAV itself. In this latter case, the Coyote performs any
of a set of systematic search patterns for a target that matches the target specifica-
tions (such as tank, ship, convoy, platoon, soldier, missile launch platform, building)
upon which time it notifies the controlling CMPCS.

The coyote can be configured with up to 450 pounds of payload and within
that limitation can contain a mixture of surveillance, ECM/ECCM and attack
payloads.
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The Coyote Datalink Subsystem (CDS)

The CDS is used to communicate between the CUAV and the CMPCS. All com-
mands to the CUAV shall be encrypted to prevent hostile intervention in the mission,
while due to bandwidth limitations, real-time telemetry may be compressed but
not encrypted. The CDS is an LOS communication system that is jam resistant,
although not necessarily anti-jamming. It involves both spread-spectrum and high-

speed frequency-hopping modes to improve jam resistance.

While the CDS is itself LOS, the CUAV may be passed among distributed
CMPCSs. It can fly preprogrammed flight plans for up to 5 hours between CMPCS,
so that it has extended range beyond LOS.

Detailed Requirements
The Unmanned Air Vehicle (UAV)

The UAV shall be no more than 30 feet long with a wingspan of no more than 10
feet. The UAV shall be able to take off and land using a runway of no more than
1500 feet by 50 feet, both automatically and via remote piloting. When fully loaded
(450 Ib payload), the system shall be able to maintain at least 24 hours of cruise
flight. Gross weight shall not exceed 2100 pounds. The CUAV shall be able to fly
reliably in inclement and low visibility weather; the CUAV shall be flyable without
loss of reliability with 15-knot cross winds, 30 knot head winds, and in rain, sleet,

hail, snow and in icy conditions.

The CUAV shall have a range of up to 400 nautical miles with an empty weight
of no more than 1200 pounds (2100 pounds loaded). It has a ceiling of 30,000 feet
and a 100-gallon (665 pound) fuel capacity.

The CUAV shall have a deployable parachute for emergency recovery.
Flight Modes

The CUAV is capable of fully automated flight, but it is envisioned that it will
normally be under navigational control of the CMPCS. The following flight modes
are supported:

* Fully automated
* Operational
¢ Remote (CUAV maintains stable attitude)

* High-fidelity remote (remote pilot maintains stable attitude)
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In fully automated mode, the CUAV can take off, fly a preprogrammed mis-
sion and return. If the CUAV experiences an unexpected loss of communications
with its CMPCS in excess of 60 minutes, it can abort the mission and perform an
automated return and landing. This is meant to decrease incidence of UAV loss due
to ECM and communications failures. If unable to land automatically, the CUAV
will deploy its emergency parachute.

Automated navigation shall be performed using either intertial navigational
system or a GPS system, or a combination of the two. The CUAV shall report its
position along the CUAV control datalink at least every 3 seconds; this data shall
include lat, long, and altitude information. When flying in environments where
fewer than three GPS satellites will be visible, the CUAV shall have an on-board

altimeter as well.
Mission Modes
Beyond flight modes, CUAV shall be designed for highly flexible mission parameters.
Normal mission modes include:
* Preplanned reconnaissance
* Remote controlled reconnaissance
* Area search
* Route search
*  Orbit point target
e Arctack
A mission can consist of any number of sequential submissions, each operating

in a different mission mode, depending on the current payload.

The Coyote Mission Planning and Control System
(CVIPCS)

The CMPCS is housed in a 30 x 8 x 8 triple-axis trailer that contains stations for pilot
and payload operations, mission planning, data exploitation, communications, and
SAR viewing. The CMPCS connects to multiple directional antennae for communi-
cation with the CUAVs, All mission data is recorded at the CMPCS since the CUAV
has no on-board recording capability. The CMPCS has a UPS that can operate at full

load for up to 4 hours in addition to using commercial power or power generators.

A single CMPCS can control up to four CUAVs in flight with one station per
CUAV. Each CUAV control station provides both pilot and payload operations
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with separate control substations, although both functions can be slaved to a single
substation for low-vigilance use.

For the reconnaissance payloads, the CMPCS shall provide enhanced automated
target recognition (ATR) capability for all surveillance types—optical, infrared,
and radar. While the CUAV has a rudimentary capability, the CMPCS provides
much more complete support for the quick identification of high-value targets
in the battlefield. This capability is specifically designed to identify mobile and
time-limited targets that may only be exposed for brief periods of time before they
go back into hiding. The system is expected to provide high clutter rejection and
a low false-positive error rate. The ATR shall be able to identify and track up to
20 targets within the surveillance area, with likely identification and probability
assessments for each. In addition to the ATR, the payload operator can add targets
visually identified from reconnaissance data or gathered from other sources. The
battlefield view can be transmitted over links to remote command staff for tactical
and strategic assessment.

Communications shall include radio, cellular, and landline phones in addition
to radio-based communication with the CUAVs.

The Coyote Reconnaissance Sensor
Suite Payload (CSSP)

The CUAV is meant to be a mobile operational framework that is highly customiz-
able for various missions. To that end, the CUAV can use gimbaled optical sensors
(with zoom and spotter lenses), gimbaled FLIR sensors or synthetic aperture radar
(SAR) for surveillance. In more situations, the sensor’s positions are controlled by
the CMPCS but may be automatically controlled for automated search missions.
Telemetry shall be broadcast over the high-bandwidth surveillance datalink with
the ability to transmit 640 x 400 resolution data at a rate of 30 fps. This data may
be compressed but there is no requirement to encrypt the high-speed data.

The CUAV is equipped with a color nose camera (generally used by the air
vehicle operator for flight control), a day variable aperture TV camera, a variable
aperture infrared camera (for low light/night) and a synthetic aperture radar for
looking through smoke, clouds or haze. The cameras produce full-motion video and
the synthetic aperture radar produces still-frame radar images. The daylight vari-
able aperture or the infrared electro-optical sensor may be operated simultaneously
with the synthetic aperture radar. To reduce weight, the CUAV need not have all
subcomponents of the CSSP but will normally have at least one.
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The Coyote Hellfire Attack Payload (CHAP)

The CHAP provides the ability for the CUAV to carry and deploy up to four AGM-
114 Hellfire missiles with the intention of being primarily for antitank and fixed
target operations. The Hellfire missile is a solid propellant rocket with a maximum
speed of 950 knots that weighs up to 100 pounds. The system shall be able to carry
from 0 to 4 missiles within the limitation of payload weight. The CHAP, when
present, shall include a laser sight designator with backscatter immunity that targets
the missile prior to release or a radar target designator. Once released, the missile
shall be self-guided, so the CHAP is intended for both guided and fire-and-forget
operation. The missile shall be able to defeat reactive armor and successfully deploy
in adverse and hazy weather. Warheads shall be high-explosive copper-lined antitank
and antibunker.

Figure B.1 Hellfire missile

The missiles attach to the CUAV on firing rails mounted on pylons, allowing
two missiles to be mounted on each wing. Prior to release, target data is downloaded
to the missile from the CUAV. Note that the CUAV cannot initiate Hellfire release
itself; such control shall be relegated to the CMPCS.

When laser targeting, the missile is fired in a Lock-On-Before-Launch (LOBL)
mode, in which the target is designated prior to missile release. The CUAV shall
pulse the laser designator with a particular pulse pattern that is downloaded into
the missile and is used to identify it from other laser designators that may be in use.
Once located, the missile homes in on the reflected laser light. This operational
mode requires the CUAV to maintain the laser designator on target until the missile

reaches its target, so a single target can be fired upon at a time.
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For fire-and-forget operations, the Hellfire missiles may be fitted with a radar
seeker. Once the CUAV has located the target and the CMPCS has given the com-
mand to release, the missile maintains radar lock on the target. This allows the
CUAV to fire and mask, or to seek other targets while the missile flies to its target.
This allows up to four separate targets to be fired upon in rapid succession.

The Coyote Datalink Subsystem (CDS)

The CDS allows uploading of mission parameters, such as CUAV payload configura-
tion, flight plans, communication frequency-hopping schedules, and so on; control
of the vehicle operation pre-, in-, and post-flight; control of the payloads including
sensor position, zoom level and selection; downloading of vehicle status, including
current position, direction, speed, and fuel status; arming and releasing of missile
payloads; setup and configuration of the operational flight program (OFP); and
control of initiation of test modes.

The CDS consists logically of two distinct datalinks, although these may share the
same communication media. The control datalink is an encrypted secure low-band-
width datalink that supports vehicle and payload commands and status information.
The required data rate is no more than 100 bits per second (bit/s) with a reliability
0f0.9994 in an ECM free environment and 0.90 in a high ECM environment. The
system shall be able to detect and correct all single- and dual-bit errors and detect
multiple-bit errors with a reliability of 0.9994.

The high-speed data link is used for transmission from the CUAV only and is
meant to include real-time telemetry, reconnaissance and surveillance data. The data
link may compress the data, but it shall be able to transmit without information
loss 640 x 480 optical data at a rate of 30 frames per second (fps) in an ECM-free
environment. In a high-ECM environment, data rate shall be 320 x 200 at 15 fps
for optical and FLIR imaging. SAR data shall be supported as single-frame images
(640 x 400) transmitted at a rate not exceeding 1 fps. The high-speed data link need
not be encrypted, as its reception by the enemy cannot lead to loss of the CUAV and
operational experience has shown that real-time surveillance data is of little practical
use to the enemy when intercepted.
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UML Diagram Taxonomy

The various kinds of diagrams defined in the UML 2.0
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Class Diagram

Shows the existence of classes and

relationships in a logical view of a system
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Class Diagram

Shows the existence of classes and
relationships in a logical view of a system
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Class Diagram

Shows the existence of classes and

relationships in a logical view of a system
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Class Diagram

Shows the existence of classes and
relationships in a logical view of a system
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Class Diagram

Shows the existence of classes and
relationships in a logical view of a system.
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Communication Diagram

Shows a sequenced set of messages illustrating a specific
example of object interaction.
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Sequence Diagram

Shows a sequenced set of messages illustrating a specific
example of object interaction.
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Sequence Diagram

Shows a sequenced set of messages illustrating a specific
example of object interaction.
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Sequence Diagram

Shows a sequenced set of messages illustrating a specific
example of object interaction.
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Sequence Diagram

Shows a sequenced set of messages illustrating a specific
example of object interaction.

Operator Description

sd Names an interaction fragment.

The alt operator provides alternatives, only one of which will be
taken. The branches are evaluated on the basis of guards, similar
to statecharts. An "else" guard is provided that evaluates to TRUE if
and only if all other branch alternatives evaluate to FALSE.

alt

opt Defines an optional interaction segment; i.e., that may or may not
occur.

Break is a short hand for an alt operator where one operand is
given and the other is the rest of the enclosing interaction fragment.
A sequence diagram analogue to C++ "break" statement.

break

Specifies that an interaction fragment shall be repeated some

loop number of times.

Weak sequencing (default). Specifies the normal weak sequencing

se ; X
q rules are in force in the fragment.

Specifies that the messages in the interaction fragment are fully
ordered - thatis, only a single execution trace is consistent with the
fragment.

strict

neg Specifies a negative, or "not" condition. Useful for capturing
negative requirements.

Defines parallel or concurrent regions in an interaction fragment.
This is similar to alt in that subfragments are identified, but differs in
that ALL such subfragments execute rather than just a single one.

par

criticalRegion Identifies that the interaction fragment must be treated as atomic
and cannot be interleaved with other event occurrences. Itis useful
in combination with the par operator.

ignore/consider | The ignore operator specifies that some message types are not
shown within the interaction fragment, but can be ignored for the
purpose of the diagram. The consider operator specifies which
messages should be considered in the fragment.

assert Specifies that the interaction fragment represents an assertion

Interaction Operators
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Use Cases

Use cases show primary areas of collaboration between the system and actors in its
environment. Use cases are isomorphic with function points.
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Implementation Diagrams

Implementation diagrams show the run-time dependencies and packaging
structure of the deployed system.
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Packages

Shows a grouping of model elements. Packages may appear within class and
other diagrams.
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Statechart

Shows the sequences of states for a reactive class or interaction during its life in
response to stimuli, together with its responses and actions.
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Statechart

Shows the sequences of states for a reactive class or interaction during its life in
response to stimuli, together with its responses and actions.
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Statechart

Shows the sequences of states for a reactive class or interaction during its life in
response to stimuli, together with its responses and actions.
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Statechart

Shows the sequences of states for a reactive class or interaction during its life in
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Statechart
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Submachine

response to stimuli, together with its responses and actions.
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Activity Diagrams

Activity Diagrams are a behavioral diagram based on token flo semantics and

includes branching, forks, and joins.
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Activity Diagrams

Activity Diagrams are a behavioral diagram based on token flo semantics and

includes branching, forks, and joins.
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Timing Diagrams
Timing diagrams show the explicit change of state or value along a linear time axis
(Timing Diagrams are new in the UML 2.0 standard)
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Timing Diagrams

Timing diagrams show the explicit change of state or value along a linear time axis
(Timing Diagrams are new in the UML 2.0 standard)
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related information, 149
safety assurance, 150
single event groups, 149
UAV concurrency model, 319
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pointer, 11
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Harmony hybrid-spiral, 41-42
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sequence diagrams, 27-29
timing diagrams, 27
intersection controller, 357-370
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front panel display, 368-369
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Mode 2 parameters, 361-362
Mode 2 timing diagram, 363
Mode 4 parameters, 364-365
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117, 273-274, 359, 365

above-surface radars (ASRs), 117, 274,
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subsurface passive loop inductors
(SPLIs), 117, 273274, 365
vehicular traffic light, 366
iterative prototypes, 181
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key concepts strategy, 128, 299-302
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mechanistic design, 179-186, 339-356

applying mechanistic design patterns,

196-201, 339-341

acquire image command structure, 344

acquire image command pattern, 345
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chain of responsibility pattern, 195, 340

data bus pattern, 196-198, 343
detect vehicle adaptor pattern, 339

light assembly connection topology, 341

observer pattern, 196
averaging filter, 192
collaboration, 179-180
command pattern, 199-201
gaussian sharpening, 192
median filter, 193
neural network, 193
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adaptor pattern, 185-186
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delegation abstraction, 183
interface abstraction, 183, 185
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workflow for the Harmony process, 182
messages strategy, 125-127, 291-296
model-driven architecture, 50, 139
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single-sourced, 4

standard, 4
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notations, 79-80
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Roadrunner fixed cycle mode nouns, 278-280
scenarios strategy, 128136, 302-314
services strategy, 125-127, 291-296
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platform specific model, 139
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rate monotonic scheduling (RMS), 151
real-world items strategy, 127, 297-298
reconnaissance management subsystem, 160, 192,
195, 289
acquire image collaboration, 195
reconnaissance management use cases, 121, 126
refactoring, 181
relations, 6
associations, 10—-14
aggregation, 13
association end, 10-11
association labels, 11
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pointer, 11
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overview requirements diagram, 215
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statecharts, 2, 22-27, 76
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state machines, 22-23, 51
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